
1 

Integrating structural homology with deep learning to achieve 

highly accurate protein-protein interface prediction for the 

human interactome  

 

Dapeng Xiong1,2,3#, Mateo Torres1,2,3#, Diana Murray4, Le Li1,2,3, Aniket C. Naravane4, 

Robert Fragoza1,2,3, Barry Honig4,5,6,7*, Haiyuan Yu1,2,3* 

 

Affiliations: 

1Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA 

2Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA 

3Center for Innovative Proteomics, Cornell University, Ithaca, NY 14853, USA 

4Department of Systems Biology, Columbia University Irving Medical Center, New York, 

NY 10032, USA 

5Department of Biochemistry and Molecular Biophysics, Columbia University Irving 

Medical Center, New York, NY 10032 

6Department of Medicine, Columbia University, New York, NY 10032 

7Zuckerman Institute, Columbia University, New York, NY 10027 

 

#These authors contributed equally to this work 

*Corresponding authors: bh6@cumc.columbia.edu (B.H.) and haiyuan.yu@cornell.edu 

(H.Y.)  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 12, 2025. ; https://doi.org/10.1101/2025.06.09.658393doi: bioRxiv preprint 

https://doi.org/10.1101/2025.06.09.658393


2 

Abstract 

A significant portion of disease-causing mutations occur at protein-protein interfaces 

however, the number of structurally resolved multi-protein complexes is extremely small. 

Here we present a computational pipeline, PIONEER2.0, that integrates 3D structural 

similarity with geometric deep learning to accurately predict protein binding partner-

specific interfacial residues for all experimentally observed human binary protein-protein 

interactions. We estimate that AlphaFold3 fails to produce high-quality structural models 

for about half of the human interactome; for these challenging cases, PIONEER2.0 

significantly outperforms AlphaFold3 in predicting their interface residues, making 

PIONEER2.0 an excellent alternative and complementary tool in real-world applications. 

We further systematically validated PIONEER2.0 predictions experimentally by 

generating 1,866 mutations and testing their impact on 5,010 mutation-interaction pairs, 

confirming PIONEER-predicted interfaces are comparable in accuracy as experimentally 

determined interfaces using PDB co-complex structures. We then used PIONEER2.0 to 

create a comprehensive multiscale structurally informed human interactome 

encompassing all 352,124 experimentally determined binary human protein interactions 

in the literature.  We find that PIONEER2.0-predicted interfaces are instrumental in 

prioritizing disease-associated mutations and thus provide insight into their underlying 

molecular mechanisms. Overall, our PIONEER2.0 framework offers researchers a 

valuable tool at an unprecedented scale for studying disease etiology and advancing 

personalized medicine.   
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Introduction 

Most proteins function through interactions with other proteins to form complexes 

that carry out a myriad of biological tasks (1, 2). In the past decade, significant effort has 

been invested into building a comprehensive interactome network for human proteins (3-

9). Many proteins are pleiotropic and carry out diverse functions through interactions with 

different proteins using distinct interaction interfaces (10). Also, mutations on the same 

protein can affect different interactions to cause clinically distinct diseases, depending on 

the interface where the mutation occurs (11). Therefore, it is of great importance to 

accurately determine the specific interface that mediates each interaction. However, only 

a small fraction (3.2%) of known human protein interactions have experimentally resolved 

surfaces (Supplementary Fig. 1).  

Over the last years, a number of computational methods have demonstrated 

exceptional capabilities in representation learning, particularly for processing 3D protein 

structures, leading to much improved performance for protein-protein interface residue 

prediction (12-15). Among these is our recently developed ensemble deep learning 

pipeline, PIONEER1.0 (15), designed to generate partner-specific interaction interface 

residue predictions for experimentally determined protein-protein interactions. In contrast, 

PrePPI (16) uses structural similarity to predict whether two proteins interact by using an 

efficient scoring function which focuses on interfacial residues (17). The complementary 

nature of these two approaches underlines the potential of an integrated framework that 

combines both strategies. Of note, AlphaFold-based methods (18-20) have made 

significant advances in predicting both single and multimeric protein structural models, 

providing crucial functional insights for proteins. However, these methods are not yet 

scalable to model entire interactomes. More importantly, in real-world applications, it has 

been shown that AlphaFold-based methods can generate high-quality structural models 

for only a small fraction of protein-protein interactions without known structures (21). 

Here, we present PIONEER2.0, an equivariant geometric deep learning pipeline 

that integrates a comprehensive set of biophysical, evolutionary, structural, and sequence 

features, together with homologous interface information from structural homologs 

detected by PrePPI, to generate precise partner-specific protein-protein interface residue 

predictions with high accuracy. Extensive benchmark tests show that PIONEER2.0 is 
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significantly better than PIONEER1.0 and other similar algorithms (12-14). Even 

compared with the latest AlphaFold3 (20) method, PIONEER2.0 achieves comparable 

overall performance and significantly outperforms it for cass where AF3 produced low 

confidence structures. We estimate below that these correspond to nearly half of all 

human protein-protein interactions without known structures. Together with the available 

atomic resolution co-crystal structures, we established a comprehensive multiscale 

structurally informed human protein-protein interactome consisting of 352,124 

experimentally-detected binary interactions. We then validated PIONEER2.0 predictions 

through large-scale mutagenesis experiments. Furthermore, we found significant 

enrichment of disease mutations at specific PIONEER2.0-predicted interaction interfaces, 

indicating that PIONEER2.0 reveals crucial structural information in delineating disease 

mechanisms. Our work provides researchers with a powerful tool to accurately predict 

partner-specific protein-protein interfaces, thereby helping accelerate structural and 

functional understanding of proteins and complexes. 

 

Results 

An equivariant geometric architecture integrating atomic and residue 

levels of information 

PIONEER2.0 uses a different design than PIONEER1,0 and, specifically, is based 

on an equivariant geometric deep learning architecture designed to incorporate a 

comprehensive set of features for predicting protein-protein interfaces. Using features 

from both interacting partners, PIONEER2.0 effectively combines biophysical, 

evolutionary, structural, and sequence information for accurate characterization of 

interfaces. Importantly, PIONEER2.0 integrates structural information from 3D spatially 

neighboring residues. 

The architecture is based on the concept of extracting meaningful characteristics 

from both the target and partner proteins, and then combining these representations to 

classify whether each residue is part of the interface for the specific interaction. To 

achieve this, PIONEER2.0 implements two representation learning branches for 

sequence and 3D structural information, respectively (Fig. 1A). The sequence branch 
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learns sequence embeddings through a transformer encoder, and a CNN encoder. The 

transformer is appropriate for capturing long-range information, while the CNN is used for 

local information. Each residue is annotated with biophysical properties, conservation, co-

evolution, solvent-accessible surface area (SASA), secondary structure, residue depth, 

and docking features for an in-depth feature characterization. Compared with our 

previous models (e.g., ECLAIR (22) and PIONEER1.0 (15)), a key new set of features 

are derived from the interface information of homologous co-complex structures in PDB 

(17) detected by PrePPI (16). As shown in Fig. 1B, for a given query of two interacting 

proteins, PrePPI searches the PDB database with a fast 3D structure alignment algorithm 

to identify template complexes whose chains are structurally similar (i.e., structural 

homologs) to the query proteins. PrePPI then scores the structure-based sequence 

alignment in the PDB template interface based on interface coverage and the interface 

propensity of the query residues (see Methods). Eight different PrePPI scores are 

assigned to each aligned residue of the query proteins as features in the sequence branch 

(Fig. 1A). It should be noted that the structure alignment by PrePPI is based solely on 

protein topology facilitating the detection of remote homologs, which is further enhanced 

by considering both the full-length query protein and its constituent domains, ensuring 

great coverage and utility of these PrePPI-derived features.   

In parallel to the sequence branch, the structural branch builds a geometric 

representation of each protein’s 3D structure at both atomic and residue levels. 

Specifically, atoms and residues are represented in an equivariant manner to preserve 

geometric properties under rotation and translation. A key step in this process is the 

integration of information from spatially neighboring atoms and residues—those that are 

physically close in 3D space, even if they are distant in sequence—allowing the model to 

capture local environment and long-range dependencies among atoms and among 

residues. These representations are embedded using a Gaussian mixture model (13), 

which captures local spatial distributions by modeling the positions of atoms and residues 

as a weighted combination of Gaussian components. This enables the model to learn 

meaningful spatial patterns in the protein 3D structures. Atomic level features are further 

refined through self-attention pooling and concatenated with residue-level embeddings to 

form comprehensive structural representations. Every node is annotated with the same 
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features as those in the sequence branch. Additionally, in the structure branch, each edge 

is annotated with Euclidean distance, angle, and coevolution information. Embeddings 

are finally processed using a graph transformer encoder.  

In both sequence and structural branches, target and partner proteins are 

represented by a feature matrix, and the partner is further processed by self-attention and 

concatenated with the target protein. Finally, the embeddings from both sequence and 

structural branches are integrated into a dense layer, culminating in the final prediction. 

 

Accurate prediction of protein-protein interfaces enabled by structural 

homologs 

To comprehensively evaluate the performance of PIONEER2.0, we carefully 

constructed large labeled datasets with interface information from experimentally 

determined co-complex structures in PDB (see Methods) for model training, validation, 

and testing. Compared with PIONEER1.0 labeled sets, we especially prioritize the 

instances where the same protein interacts with multiple interaction partners using distinct 

interfaces in our labeled dataset to build a model that better predicts partner-specific 

interfaces. Furthermore, we ensured that no homologous complexes appear across 

labeled sets so as to maximize the generalization of our pipeline and to avoid data 

leakage. In total, the labeled sets contain 4,649, 776 and 802 protein-protein interactions 

for model training, validation and testing, respectively.  

As described above, one key addition in PIONEER2.0 is binding interface 

information from structural homologous PDB complexes detected by PrePPI. To mitigate 

data leakage, for each interaction in the labeled sets, we removed PDB complexes with 

high sequence homology to both query proteins from the pool of template complexes 

interrogated by PrePPI. As shown in Fig. 1C, predictive performance on the test set 

directly using the aligned interface information from the top structural homologs detected 

by PrePPI is already quite good. Comprehensively incorporating all other features and 

aggregating neighboring information at both sequence and 3D structural levels in the full 

PIONEER2.0 pipeline further significantly improve the performance (Fig. 1C).  

Since we have previously shown that PIONEER1.0 (15) outperforms recent state-

of-the-art interface prediction methods (such as PeSTo (14), ScanNet (13), MaSIF-Site 
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(12), and others), we first compared the performance of PIONEER2.0 with PIONEER1.0 

and found that PIONEER2.0 has significantly improved its predictive performance (Fig. 

1D; AUROC increased from 0.693 to 0.854). AlphaFold2 (18) was a breakthrough 

development in structural modeling for individual proteins. Many AlphaFold-based 

methods (21, 23) have been developed to model protein-protein interactions. AlphaFold3 

(20) is the latest model with state-of-the-art performance for modeling not only protein-

protein interactions, but also protein-DNA and -small-molecule interactions. We further 

evaluated PIONEER2.0 by comparing it with the AlphaFold3, using the contact 

probabilities provided by AlphaFold3 on a per-residue basis (Fig. 1D), and found that 

PIONEER2.0 achieves comparable overall performance (AUROC = 0.854, 0.856 for 

PIONEER2.0 and AlphaFold3, respectively). 

 

PIONEER2.0 significantly outperforms AlphaFold3 in interface residue 

prediction for nearly half of the human interactome  

There are hundreds of thousands of experimentally determined binary protein-

protein interactions (i.e., the human interactome; see Methods) for human proteins 

already published in the literature, only ~3.2% of which have structural models in PDB 

(Supplementary Fig. 1). It is thus of great interest to predict the binding interface 

information for the ~96.8% of the human interactome without any known structures (24).   

Since AlphaFold3 has become the de-facto method for computationally predicted 

structural models of protein interactions, we carefully analyzed its performance on 

interactions of known and unknown structures. We generated AlphaFold3 models for the 

test set of PDB complexes (Fig. 1D) and for 1,024 randomly chosen protein-protein 

interactions in the literature of unknown structures. It is critical to make sure that these 

1,204 interactions are of high quality; they are chosen from our high-quality literature-

curated binary interaction dataset from low-throughput experiments (“HQ-LC-Binary”) in 

our HINT database (24), which integrates information from commonly used databases, 

including BioGRID (25), DIP (26), IntAct (27), MINT (28), iRefWeb (29), HPRD (30), PDB 

(17), and MIPS (31) by examining the evidence codes and extent of literature curation for 

each interaction (see Methods). The HQ-LC-Binary dataset in HINT contains only 

interactions with at least two separate low-throughput publications with evidence codes 
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confirming direct, physical binding of the interactions. Therefore, the HINT-HQ-LC-Binary 

dataset contains protein-protein interactions of very high quality (32-34).   

We used the AlphaFold3 ranking score (20) as the confidence metric for their 

models. A higher ranking score indicates a greater likelihood that the complex structure 

is accurately predicted; ranking scores less than 0 were truncated to 0 for this analysis. 

The ranking score distributions in Fig. 2A, B illustrate that, overall, AlphaFold3 models for 

interactions of unknown structures are of lower confidence than models for interactions 

with PDB structures: 48% of models for interactions of unknown structures have ranking 

scores ≤ 0.5 whereas only 23% of models for PDB interactions score that poorly. This 

suggests that complementary approaches, such as PIONEER2.0, will be extremely 

valuable in providing additional confidence metrics for AlphaFold3 models; and, more 

importantly, in making novel predictions for PPI interfaces that are not structurally 

resolved. 

Because 96.8% of the human interactome does not have known structures in PDB 

(Sup Fig. 1), to more fairly evaluate PIONEER2.0’s performance, we took a bootstrap 

resampling strategy to generate the same distribution of AlphaFold3 ranking scores as 

the 1,024 interactions without known structures by taking random samples from the test 

set. Such a resampling strategy is necessary because we can only evaluate the quality 

of AlphaFold3 predicted structural models by comparing them to available experimental 

structures in PDB. As shown in Fig. 2C, in this scenario, PIONEER2.0 (AUROC = 0.81) 

significantly outperforms AlphaFold3 (AUROC = 0.77) in real-world applications on 

interactions without known structures. Furthermore, we focused on the more challenging 

interactions whose AlphaFold3 ranking scores are below 0.5, which accounts for nearly 

half (48.05%) of all human interactions without known structures (Fig. 2B). Our analysis 

reveals that PIONEER2.0 significantly outperforms AlphaFold3 in interface predictions for 

these challenging interactions, as evaluated by F1, Precision, Recall, and MCC scores 

(Fig. 2D). 

We then conducted a detailed performance comparison between PIONEER2.0 

and AlphaFold3 across different AlphaFold3 ranking score bins without applying the 

bootstrap resampling strategy, aiming to further demonstrate the strong capability of 

PIONEER2.0 for protein-protein interface prediction. The results reveal that PIONEER2 
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consistently and significantly outperforms AlphaFold3 in all bins where the ranking score 

is below 0.5 (Fig. 3 and Supplementary Fig. 2), and achieves comparable performance in 

the bins with higher AlphaFold3 ranking scores (Supplementary Fig. 2).  

One key distinction between PIONEER2.0 and AlphaFold3 is that PIONEER2.0 

focuses exclusively on predicting interface residues, while AlphaFold3 is designed to 

predict co-complex structures, which is a much more difficult task. Therefore, even minor 

changes in the relative positions of the two proteins in a structural model can have a 

significant impact on the accuracy of interface residue predictions by AlphaFold3. Here, 

we show two examples (Figs. 3E, F) where AlphaFold3 builds good models for the 

monomers but places them in different orientations relative to the PDB complexes, 

leading to misidentification of interface residues even when the contact probabilities may 

be high. Interface residues predicted by PIONEER2.0 are labeled as green (correct 

prediction) and red (incorrect) spheres. It is interesting to note that even the technically 

incorrect predictions (red spheres) by PIONEER2.0 are in the binding interface area, 

highlighting the robust performance of PIONEER2.0, even for cases when AlphaFold3 

struggles.  

These comparisons confirm PIONEER2.0’s robust predictive performance, 

particularly for interactions where AlphaFold3-generated models are less reliable. Notably, 

these low-scoring bins represent a substantial portion of the human interactome without 

known structures, which are precisely the challenging cases where accurate interface 

prediction is most needed. In particular, 48.05% of all human interactions without known 

structures are expected to have AlphaFold3 models with ranking score below 0.5; for 

these interactions with low-quality AlphaFold3 models (46.51% of the entire human 

interactome), PIONEER2.0 will provide better quality interface predictions. Finally, the 

ability of PIONEER2.0 to maintain strong performance across all interactions with both 

low and high confidence AlphaFold3 models underscores its generalizability and practical 

applicability. 

 

Construction and validation of the structurally informed human 

interactome 
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 We compiled a comprehensive set of experimentally validated protein-protein 

interactions for human from our HINT database, which integrates information from eight 

commonly used databases as described above. We carefully examine the evidence 

codes of each interaction to select only those with experimental evidence to be direct 

binding, because otherwise, the concept of predicting interface residues does not even 

apply. This resulted in 352,124 binary human protein-protein interactions, 340,860 of 

which have no available structures in PDB. We then used the fully optimized PIONEER2.0 

to predict interfaces for all 340,860 interactions. Since we made the partner-specific 

interface prediction for every residue in a protein pair, we made predictions for more than 

397 million residue-protein interaction pairs. By combining PIONEER2.0 interface 

predictions with 11,264 interactions with experimental structures in PDB, we generated a 

comprehensive 3D structural human interactome (Fig. 4A), in which all 352,124 

interactions have partner-specific interface information at the residue level, together with 

atomic resolution 3D models for those appear in PDB.  

We conducted a comprehensive evaluation of the quality of our predicted interface 

residues and their biological implications by performing large-scale mutagenesis 

experiments. These experiments measured the fraction of disrupted interactions caused 

by mutations to our predicted interfacial and non-interfacial residues.  We also measured 

the effects of mutations to known interfacial and non-interfacial residues in PDB co-

complex structures. Using our Clone-seq pipeline (35), we generated 1,866 mutations 

across 895 proteins and assessed their impact on 5,010 mutation interaction pairs via a 

high-throughput yeast-two-hybrid (Y2H) assay. As shown in Fig. 4B, our results 

demonstrate that mutations of PIONEER2.0-predicted interfacial and non-interfacial 

residues disrupt protein-protein interactions at a rate very similar to that observed in PDB 

complexes, with both showing significantly higher disruption rates for interfacial versus 

non-interfacial residues. These large-scale experiments confirm the high quality of our 

interface predictions and validate the overall effectiveness of our PIONEER2.0 pipeline. 

Given that interaction disruption is crucial for understanding the molecular mechanisms 

of disease mutations (35, 36), our findings suggest that PIONEER2.0-predicted interfaces 

can play a key role in prioritizing disease-associated variants and forming experimentally 

testable hypotheses of functional mechanisms. 
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We examined the distribution of population genetic variants and found that their 

enrichment in PIONEER2.0-predicted interfaces and non-interfaces closely aligns with 

the distribution observed in known interfaces and non-interfaces, respectively (Fig. 4C). 

The results also reveal a depletion of common, non-deleterious variants in both known 

and predicted interfaces, indicating that PIONEER2.0 effectively predicts functionally 

significant interface residues. We also measured the enrichment of known disease-

associated mutations from the Human Gene Mutation Database (37) (HGMD) in 

PIONEER2.0-predicted interface residues, and found it to be significantly higher than that 

of predicted non-interface residues, similar to enrichment of disease mutations in known 

interfaces of protein co-complexes in PDB (Fig. 4D). Overall, our results demonstrate a 

strong relationship between PIONEER2.0 prediction scores and key residues essential 

for protein functions. 

  

Discussion 

In this study, we introduce PIONEER2.0, an equivariant geometric deep learning 

framework designed for highly accurate protein-protein interface residue prediction at the 

whole interactome scale by integrating interface information from structural homologs with 

a comprehensive set of biophysiochemical, evolutionary, and structural features. Our 

analysis reveals that AlphaFold-based methods tend to build lower quality structural 

models for nearly half of the human interactome of unknown structures compared to those 

that appear in PDB; for these challenging cases, PIONEER2.0 outperforms AlphaFold3 

in interface residue prediction. Our results thus establish PIONEER2.0 as a powerful tool 

for large-scale interface mapping across entire interactomes. 

We applied PIONEER2.0 to resolve the interface information for all 340,860 human 

protein-protein interactions without experimental structures in the literature, which, 

together with 11,264 interactions with PDB co-complex structures, yields a 

comprehensive structurally informed human interactome. Using large-scale mutagenesis 

Y2H experiments, we extensively tested our predictions and found that PIONEER2.0-

predicted interface residues are validated at the same rate as PDB interface residues.  

Furthermore, our analyses show that PIONEER2.0-predicted interface residues have 

significant enrichment of rare alleles (i.e., functionally important sites) and known disease 
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mutations, to the same degrees as those of PDB interfaces and non-interfaces, 

confirming the strong biological and functional relevance of PIONEER2.0 predictions. In 

summary, our PIONEER2.0-generated structurally informed human interactome will be 

an invaluable resource for the study of disease mechanisms and development of 

personalized treatments. 

It is important to recognize that PIONEER2.0 is focused on identifying interface 

residues for each interaction, while AlphaFold3 is designed to predict the full co-complex 

structure of interacting proteins, which is a substantially more challenging task. Although 

it is important to know the binding interface of an interaction (as PIONEER2.0 does), 

having a structural model of the whole co-complex provides even more insight. By 

integrating AlphaFold3 models with PIONEER2.0 predictions, we can better understand 

functional implications of a specific protein-protein interaction or its disruptions by 

mutations, and better design potential therapeutics to target this interaction. In fact, as 

described above, many of the AlphaFold3 errors likely involve inter-protein orientations 

rather than the structures of individual monomers. Thus, for low-confidence models, 

PIONEER2.0 can be used to assess the quality of the models, and in addition, can 

potentially be used as basis for algorithms that further refine or correct protein orientations. 

While PIONEER2.0’s performance is significantly enhanced by the inclusion of 

structural homolog information and the equivariant geometry architecture, we expect that 

its capability can be further boosted by implementing even more advanced architectures 

that will be developed in the future, and by incorporating novel features, such as sequence 

language models (e.g., ESM2 (38)), and structural language models (e.g., Saprot (39)). 

With the ongoing progress in sequencing technologies and large-scale genome/exome 

sequencing projects, such as those from TCGA (40) and precision medicine initiatives, 

we envision that PIONEER2.0’s structurally informed interactome will bridge the gap 

between genomic data and structural proteomics.  
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Methods 

Dataset construction 

In our HINT database, we compiled a comprehensive set of experimentally 

validated binary protein-protein interactions for human, by integrating information from 

commonly used databases, including BioGRID (25), DIP (26), IntAct (27), MINT (28), 

iRefWeb (29), HPRD (30), PDB (17), and MIPS (31). We carefully examine the evidence 

codes of each interaction to select only those with experimental evidence to be direct 

binding. This resulted in 352,124 binary human protein-protein interactions, 340,860 of 

which have no experimental structures; while the other 11,264 have experimentally 

determined co-complex structures in PDB. Among these interactions, we carefully 

selected a subset (named “HINT-HQ-LC-Binary”) of 44,115 high-quality literature-curated 

protein-protein interactions that are required to be validate by two separate publications 

using low-throughput experimental methods.  

To construct our labeled sets, partner-specific interface residues were identified 

from the known co-crystal structures available in PDB. SIFTS (41) was then used to map 

the UniProt indices to the PDB indices. The interface residues are determined as residues 

that are surface residues (≥15% exposed surface) with its relative SASA decreasing by 

≥1Å2 in the complex. Surface areas were calculated using NACCESS (42). We processed 

all available structures in PDB for each interaction, and considered a residue to belong to 

the interface if it matches our criterion in at least one of the processed co-crystal 

structures. Our dataset includes only interactions for which at least 30% of the UniProt 

residues are covered by co-crystal structures. In addition, to ensure the robustness and 

generalizability of our models, as well as a fair performance evaluation, we prevented any 

homologous interactions from being shared between any two datasets that are from the 

training, validation, and testing splits. Specially, we defined a pair of interactions to be 

homologous if both proteins in one interaction are homologs to both proteins in the other 

interaction. We performed three iterations of PSI-BLAST (43) at an E-value cutoff of 0.001 

to determine if two proteins are homologous. This resulted in 4,649, 776, and 802 

interactions, corresponding to 2,441,383, 357,276, 326,868 labeled residues for sufficient 

model training, validation, and testing, respectively (Supplementary Data). 
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Graph representation 

For a given protein, we created a graph for each residue to enhance structural 

representations. Each residue is represented by its Cα atom, and the graph includes the 

16 closest neighbors to the target residue as nodes with their interactions as edges. Each 

node and edge are represented by a comprehensive set of features. In specific, in addition 

to the features used in our previous pipeline, PIONEER and ECLAIR (22), which describe 

each residue in terms of biophysical residue properties, conservation, coevolution, 

relative SASA, and secondary structure, we have now incorporated three new feature 

groups for the node representation. These include residue depth, docking metrics, and 

PrePPI metrics, offering a more comprehensive feature characterization. 

We used MSMS (44) to calculate the residue depth, which describes the average 

distance of the atoms of a residue from the solvent accessible surface. EquiDock (45) 

was used for the rigid body protein-protein docking, after which the interface residues 

were calculated using the above pipeline. PrePPI (16) is a pipeline for proteome-wide 

prediction of known and novel PPIs; PrePPI models and results are available for 

examination and download from our website. In specific, pairs of proteins, represented by 

models from the AlphaFold Structure Database (46),  are screened for structural 

neighbors against a large pool of structures from the PDB database with a fast structure 

alignment method (47). For a given pair of query proteins, a suitable interaction template 

contains structural neighbors of both queries, and the structure-based sequence 

alignment is examined. The model for the putative PPI is  calibrated against the PDB 

template complex interface, providing several scores that are incorporated in a Bayesian 

framework to provide a structural modeling likelihood ratio that the query proteins interact 

The PrePPI feature group includes 8 scores, which are structural modeling likelihood ratio 

for the overall model, structural similarity between the query protein models and their 

respective template chain, the number of residue pairs in the template, the number of 

interacting residue pairs in the template that are preserved in the model, the fraction of 

interacting residue pairs in the template that are preserved in the model, the number of 

predicted interfacial residues in the query models that align to interfacial residues in their 

respective template chains, and the number of interacting residue pairs in the template 
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that are preserved in the model and are predicted to be interfacial residues in the query 

protein with the program PredUs (48), respectively.  

For the edge, the feature group includes the Euclidean distance, angle and the 

coevolution between the interacted node pair. 

 

Model building 

To ensure the in-depth capture of structural information, we incorporated the 

equivariant geometric information at both atomic and residue levels before the processing 

of the graph Transformer in the structure branch of PIONEER2.0 architecture. The 

geometric representation is referred to the literature (13) to make sure the equivariant 

properties under rotation and translation. The geometric representations are embedded 

through Gaussian mixture model at both atomic and residue levels, respectively, and are 

subsequently concatenated via the self-attention pooling at the amino acid scale. The 

concatenation is then integrated with the node features along with the edge features for 

the subsequent graph Transformer embedding. 

We compiled a set of representative protein structures from PDB and AlphaFold 

database for each protein. To enhance the practical applicability of our method more and 

prevent the memorization of known interfaces, we trained the model using the single 

protein structures that are not derived from co-crystal or homologous co-complex 

structures. PDB structures were given the highest priority, while AlphaFold structures 

were used as a secondary option. The structures are then ranked based on UniProt 

residue coverage as determined by SIFTS, while ensuring that homologous PDB 

structures of interacting protein pairs were excluded. For each target protein, residue-

level predictions were made using the first corresponding structure that contains the 

structural information of that residue. For the partner protein, we selected only the 

structure with the highest UniProt coverage. The PIONEER2.0 framework was 

implemented using PyTorch (https://pytorch.org), with the graph Transformer built on the 

Deep Graph Library (https://www.dgl.ai). The model was trained using binary cross-

entropy loss and the Adam optimizer. To accommodate the variable length inputs, we 

trained the model in a mini-batch mode, processing a single protein pair per batch. 
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Mutagenesis validation experiments 

We conducted mutagenesis experiments by introducing random human population 

variants from the gnomAD database (49) into predicted interfaces, known interfaces and 

non-interfaces. Variants located in predicted interfaces were selected based on 

PIONEER2.0 results, while those in known interfaces and non-interfaces from co-crystal 

structures in PDB served as positive and negative controls, respectively. All selected 

mutations were introduced using our Clone-seq pipeline (35). In total, we generated 1,866 

mutations across 895 proteins and assessed their effects on 5,010 mutation interaction 

pairs—either disrupting or maintaining the interactions—using our high-throughput Y2H 

assay. 

 

Y2H assay 

We conducted the Y2H assays using the pipeline as previously described (15, 22). 

We used Gateway LR reactions to transfer all WT/mutant clones into our Y2H pDEST-

AD and pDEST-DB vectors. All DB-X and AD-Y plasmids were transformed into the Y2H 

strains MATα Y8930 and MATa Y8800, respectively. Subsequently, each DB-X MATα 

transformant (WT and mutants) was individually mated with its corresponding AD-Y MATa 

transformant (WT and mutants) using automated 96-well procedures, including 

inoculation of AD-Y and DB-X yeast cultures, mating on YEPD media (incubated 

overnight at 30 °C) and replica plating onto selective Synthetic Complete media lacking 

histidine, leucine and tryptophan and supplemented with 1 mM 3-amino-1,2,4-triazole 

(SC-Leu-Trp-His+3AT), SC-Leu-His+3AT plates containing 1 mg L−1 cycloheximide (SC-

Leu-His+3AT+CHX), SC-Leu-Trp-Adenine (Ade) plates and SC-Leu-Ade+CHX plates to 

test for CHX-sensitive expression of the LYS2::GAL1–HIS3 and GAL2–ADE2 reporter 

genes. We identified spontaneous auto-activators (50) by growth on plates containing 

cycloheximide. These plates were incubated overnight at 30 °C and subjected to replica 

cleaning the following day. The plates were then incubated for an additional three days, 

after which positive colonies were scored as those growing on SC-Leu-Trp-His+3AT 

and/or on SC-Leu-Trp-Ade, but not on SC-Leu-His+3AT+CHX or on SC-Leu-Ade+CHX. 

An interaction was considered disrupted by a mutation if it resulted in a consistent 

reduction of at least 50% in growth across both reporter genes, relative to the Y2H 
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phenotypes of the corresponding WT allele, as benchmarked by two-fold serial dilution 

experiments. All Y2H assays were independently repeated three times. 
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Figure legends 

 

Fig. 1. Overview architecture of PIONEER2.0. (A) The sequence information of both 

target and partner proteins is encoded through the Transformer and CNN encoders for 

the extraction of long-range and short-range dependencies among residues, respectively. 

The embeddings are then concatenated through self-attention pooling. The structural 

information of both target and partner proteins is encoded on both residue- and atom-

levels, respectively. The residue- and atom- level embeddings are then concatenated 

through self-attention pooling and are further encoded by the graph Transformer 

encoders for target and partner, respectively. The resulting embeddings of both target 

and partner proteins are concatenated through self-attention pooling. Finally, the 

sequence and structural embeddings are concatenated and are input to the dense layer 

for the interface residue prediction of the target proteins. (B) Overview of the PrePPI 

pipeline which provides features for the sequence branch. (C) Comparison of PrePPI and 

PIONEER2.0 performance at recovering the PDB test set. (D) Comparison of receiver 

operating characteristic (ROC) curves of PIONEER2.0 and AlphaFold3 for evaluation on 

the PDB test set. 

 

Fig. 2. PIONEER2.0 and AlphaFold3 interface residue predictions for protein 

interactions of known and unknown structures. (A) Distribution of AlphaFold3 ranking 

scores on interactions with and without PDB structures. (B) Cumulative distribution of 

AlphaFold3 ranking scores on interactions with and without PDB structures. (C) 

Comparison of ROC curves for PIONEER2.0 and AlphaFold3 using the bootstrapped 

samples from the test set. AUROC = 0.5 for a random prediction. (D) Comparison of 

PIONEER2.0 and AlphaFold3 on interactions with AlphaFold3 ranking score below 0.5, 

using the bootstrapped samples. The vertical axis denotes the metric value. The “***” 

indicates that the P-value is less than 0.001. 

 

Fig. 3. PIONEER2.0 outperforms AlphaFold3 for interface residue prediction across 

various AlphaFold3 model confidence levels. (A-D) Comparison of PIONEER2.0 and 

AlphaFold3 on interactions with AlphaFold3 ranking scores below 0.2 (A), 0.3 (B), 0.4 (C) 
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and 0.5 (D), respectively. The “*” and “***” indicate that the P-value is less than 0.05 and 

0.001, respectively. In the bar plots, the vertical axis denotes the metric value.  (E-F) The 

AlphaFold3 predictions on the interactions between the proteins encoded by rplI and 

rpmB (PDB: 5WIT, chains 1I and 11) (E) and by casE and casB (PDB: 4TVX, chains A 

and J) (F) demonstrate that AlphaFold3 fails to correctly position the two proteins relative 

to each other, leading to inaccurate interface predictions. The light blue and blue 

represent the true co-complex structures, and the yellow and orange represent the 

AlphaFold3 predictions. The green and red spheres correspond to correct and incorrect 

PIONEER2.0 interface predictions, respectively. 

 

Fig. 4. PIONEER2.0 provides high-quality interface residues for the structurally 

informed human protein-protein interactome. (A) The interactome includes interface 

residues calculated from experimentally determined PDB structures, and PIONEER2.0 

predictions of interface residues for the remaining unresolved interactions. (B) Fraction 

of interactions disrupted by random population variants in PIONEER2.0-predicted and 

known interface residues. The error bar denotes standard error for the binomial 

distribution. Significance was determined by the two-sided z-test. (C) Enrichment of 

population variants in PIONEER-predicted and known interfaces. The error bar denotes 

standard error for the log odds ratio. (D) Enrichment of disease-associated mutations in 

PIONEER-predicted and known interfaces. The error bar denotes standard error for the 

log odds ratio. Significance was determined by the two-sided z-test. 

 

 

Supplementary Fig. 1. The proportions of the human protein-protein interactome  

with known (PDB) and unknown structures.  

 

Supplementary Fig. 2. Comparison of PIONEER2.0 and AlphaFold3 across various 

AlphaFold3 model confidence levels. (A-I) Comparison of PIONEER2.0 and 

AlphaFold3 on interactions with AlphaFold3 ranking scores within 0.0-0.2 (A), 0.2-0.3 (B), 

0.3-0.4 (C), 0.4-0.5 (D), 0.5-0.6 (E), 0.6-0.7 (F), 0.7-0.8 (G), 0.8-0.9 (H), 0.9-1.5 (I), 
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respectively. The “*”, “**” and “***” indicate that the P-values are less than 0.05, 0.01, and 

0.001, respectively. “ns” indicates not significant.  
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