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Abstract 10 

Biological systems exhibit remarkable heterogeneity, characterized by intricate interplay among 11 

diverse cell types. Resolving the regulatory processes of specific cell types is crucial for 12 

delineating developmental mechanisms and disease etiologies. While single-cell sequencing 13 

methods such as scRNA-seq and scATAC-seq have revolutionized our understanding of 14 

individual cellular functions, adapting bulk genome-wide assays to achieve single-cell resolution 15 

of other genomic features remains a significant technical challenge. Here, we introduce Deep-16 

learning-based DEconvolution of Tissue profiles with Accurate Interpretation of Locus-specific 17 

Signals (DeepDETAILS), a novel quasi-supervised framework to reconstruct cell-type-specific 18 

genomic signals with base-pair precision. DeepDETAILS’ core innovation lies in its ability to 19 

perform cross-modality deconvolution using scATAC-seq reference libraries for other bulk 20 

datasets, benefiting from the affordability and availability of scATAC-seq data. DeepDETAILS 21 

enables high-resolution mapping of genomic signals across diverse cell types, with great 22 

versatility for various omics datasets, including nascent transcript sequencing (such as PRO-cap 23 

and PRO-seq) and ChIP-seq for chromatin modifications. Our results demonstrate that 24 

DeepDETAILS significantly outperformed traditional statistical deconvolution methods. Using 25 

DeepDETAILS, we developed a comprehensive compendium of high-resolution nascent 26 

transcription and histone modification signals across 39 diverse human tissues and 86 distinct 27 

cell types. Furthermore, we applied our compendium to fine-map risk variants associated with 28 

Primary Sclerosing Cholangitis (PSC), a progressive cholestatic liver disorder, and revealed a 29 

potential etiology of the disease. Our tool and compendium provide invaluable insights into 30 

cellular complexity, opening new avenues for studying biological processes in various contexts.  31 
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Introduction 32 

Transcription is a tightly regulated process involving multiple rate-limiting steps, including the 33 

binding of transcription activators, chromatin remodeling and modification, enhancer-promoter 34 

interactions, preinitiation complex (PIC) formation, promoter escape, promoter-proximal 35 

pausing, and release of paused Pol II into productive elongation1,2. Understanding the regulatory 36 

mechanisms governing transcription is crucial for deciphering complex biological processes. 37 

High-throughput sequencing assays, which capture snapshots of various regulatory aspects, have 38 

enhanced our understanding of these processes. For example, chromatin immunoprecipitation 39 

followed by sequencing (ChIP-seq) maps genome-wide distributions of transcription factor 40 

binding and histone modifications3. Chromatin conformation capture assays4, such as Hi-C, can 41 

catch enhancer-promoter interactions. Nascent transcript sequencing assays such as PRO-seq5, 3′ 42 

of CoPRO6, and mNET-seq7 can measure the dynamics of polymerase pausing and escape. The 43 

interplay between regulatory layers8 makes it possible to repurpose assays designed for profiling 44 

one process to capture the convoluted signal from other processes. For example, GRO/PRO-45 

cap5,9 were originally designed for precise annotation of all active transcription start sites (TSSs) 46 

genome-wide, but the recent discovery regarding transcription at enhancer loci10 makes them 47 

highly sensitive assays for pinpointing active enhancers11. Collectively, these bulk sequencing 48 

technologies provide powerful tools to study the transcriptional regulatory processes that control 49 

cellular function and fate. 50 

 51 

While powerful, bulk sequencing assays inherently aggregate signals across the entire cell 52 

populations, which can obscure cell-type-specific regulatory mechanisms when applied to tissue 53 

samples usually composed of diverse cell types that are available in limited quantities. In 54 
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contrast, single-cell sequencing technologies such as single-cell/single-nucleus RNA sequencing 55 

(sc/snRNA-seq) and single-cell/single-nucleus assay for transposase-accessible chromatin 56 

sequencing (sc/snATAC-seq)12,13 offer a transformative approach by resolving cellular 57 

heterogeneity and enabling the characterization of regulatory processes at the individual cell 58 

level. In addition to measuring mRNA expression and chromatin accessibility, recent 59 

technological advances in this field also enabled the detection of more genomic features14–18. 60 

However, adapting bulk sequencing assays to single-cell resolution in general faces significant 61 

experimental challenges, including the scarcity of input material and limitations in the efficiency 62 

of library preparations which can hinder certain assay functionalities18. Moreover, ease of use15,16 63 

and cost19 present additional obstacles. 64 

 65 

Alongside the development of single-cell-resolution assays, there is increasing interest in 66 

developing in silico deconvolution methods to reconstruct cell-type-specific profiles from 67 

sequencing data generated from bulk samples. Many current methods primarily rely on single-68 

cell sequencing data from one assay type as the reference to deconvolute bulk sequencing data 69 

from the same modality. A widely explored approach involves developing statistical tools to 70 

estimate cell-type fractions20,21 and cell-type-specific gene expression from bulk RNA-seq 71 

samples using gene count matrices from scRNA-seq as references22–26. Due to the need for a 72 

panel of either bulk or reference samples, these tools were primarily used on consortium-level 73 

data such as TCGA22,23 and SFARI25,27. Recently, efforts have expanded to deconvolve other 74 

modalities, such as DNA methylation28,29, using references from the same modalities. However, 75 

obtaining single-cell sequencing reference libraries for many other omics modalities (e.g. nascent 76 

transcriptome) remains costly and challenging. Given the interconnected nature of regulatory 77 
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layers, an alternative approach is to leverage single-cell references from more widely available 78 

modalities, such as sc/snATAC-seq, to deconvolve bulk data from assays that are not single-cell-79 

ready (i.e. cross-modality deconvolution). However, a major challenge in cross-modality 80 

deconvolution is the lack of direct correspondence or alignment between different omics 81 

measurements, which can lead to discrepancies in data interpretation. For instance, a genomic 82 

region may exhibit similar accessibility across multiple cell types but only initiate transcription 83 

in one. This scenario is unique to cross-modality analyses, as intra-modality deconvolution does 84 

not encounter such complexities due to the inherent alignment within the same data type. As a 85 

result, we believe statistical methods will not be sufficient and we need to develop a new type of 86 

methods to both estimate the profiles of cell types and model the differences between the 87 

modalities. 88 

 89 

In this study, we developed DeepDETAILS, a novel deep learning model enabling precise 90 

deconvolution of bulk omics profiles into cell-type-specific signals at base-pair resolution in a 91 

cross-modality manner. DeepDETAILS deconvolves bulk sequencing data—such as nascent 92 

transcriptome and histone modification profiles—using a sc/snATAC-seq library from the same 93 

type of tissue as reference. Our results demonstrate that DeepDETAILS significantly 94 

outperformed traditional statistical deconvolution methods. Using DeepDETAILS, we developed 95 

a comprehensive compendium of high-resolution nascent transcription and histone modification 96 

maps across 39 human tissues and 86 distinct cell types. Furthermore, we applied our 97 

compendium to fine map risk variants associated with primary sclerosing cholangitis, a 98 

challenging illness with unknown etiology, characterized by chronic bile duct destruction and 99 

progression to end-stage liver disease, revealing potential cellular origins of the disease. Our 100 
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tool, together with this extensive compendium, serves as an invaluable resource for researchers, 101 

enhancing our understanding of gene regulation in various tissues and conditions. 102 

 103 

Results 104 

Deep learning architecture of DeepDETAILS 105 

As the fundamental building blocks of the eukaryotic genome packaging/architecture, the 106 

placement of nucleosomes influences many transcriptional regulatory processes. The genome-107 

wide landscape of the nucleosome-depleted regions, also known as open chromatin regions, 108 

indicates active regulatory regions that are highly specific to cell types30–32. With sc/sn-ATAC-109 

seq becoming increasingly available and affordable for diverse samples, we sought to use 110 

chromatin accessibility information for each cell type to reconstruct other regulatory processes 111 

from various bulk sequencing assays. To achieve this, we developed DeepDETAILS, an 112 

innovative deep learning framework designed to reconstruct cell-type-specific regulatory signals 113 

from bulk data (Fig. 1a). DeepDETAILS uses branches of dilated convolutional neural network 114 

blocks to make individual predictions for each cell type, which are then combined linearly to 115 

reconstruct the bulk signal. While deep learning has previously been used in genomics, most 116 

efforts have focused on fully supervised settings that aim to learn regulatory sequence patterns33 117 

or predict the functional impact of noncoding variants34,35. These models typically rely on direct, 118 

experimentally measured signals, such as transcription initiation36 or histone modifications37, 119 

from bulk samples for model training (Fig. 1b). In contrast, DeepDETAILS is uniquely designed 120 

for the deconvolution setting, where cell-type-specific signals are not directly available. Instead 121 

of learning from ground-truth signals for each cell type, DeepDETAILS operates in a quasi-122 
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supervised manner by minimizing the differences between the predicted and actual observed 123 

bulk signals (Fig. 1b).  124 

 125 

Inspired by the fact that open chromatin is a necessary but not sufficient condition for many 126 

regulatory processes (Supplementary Fig. 1), we introduced a constraint condition into 127 

DeepDETAILS’ architecture based on the accessibility of the local region, so that if a locus is 128 

not accessible in one cell type, tentative predictions made in this cell type will not be 129 

incorporated into the final prediction. This forms as a feedback mechanism to the training 130 

process and introduces asymmetricity in the architecture. 131 

 132 

We implemented two versions of DeepDETAILS (Supplementary Fig. 2). One version used only 133 

the DNA sequence and the constraint condition from chromatin accessibility (which we referred 134 

to as the “seq only” model), which aims for maximizing the understanding of contribution of 135 

DNA sequences. The other version fused the base pair resolution profiles of chromatin 136 

accessibility learned by gated recurrent units (GRUs) with the sequence embeddings learned by 137 

CNNs (which we referred to as the “fused” model). Fusion of accessibility embeddings allowed 138 

for a smaller architecture to extract information from DNA sequences, leading to smaller 139 

footprints on GPU memory (Supplementary Fig. 2f). It is also more scalable and flexible, 140 

enabling the deconvolution of more cell types given the same configuration of hardware 141 

(Supplementary Fig. 2g). 142 

 143 
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DeepDETAILS learns TF motifs that govern cell-type agnostic general regulatory 144 

processes and cell identity  145 

To validate DeepDETAILS, we conducted a proof-of-concept study using a simulated 146 

heterogeneous “tissue” sample composed of three distinct cell types: K562, GM12878, and 147 

MCF-7 (Fig. 1c). We generated the bulk library by combining GRO/PRO-cap data, which 148 

captures transcription initiation signals from all enhancers and promoters genome-wide, for each 149 

cell line, and utilized snATAC-seq of these cell lines as the reference library (Fig. 1c, Methods). 150 

When applied to the simulated libraries, both the “seq only” and “fused” versions of 151 

DeepDETAILS successfully reconstruct the initiation profiles for all three cell types (Fig. 1d and 152 

e). 153 

 154 

To interpret the sequence motifs that DeepDETAILS employed in its predictions, we used the 155 

input × gradient method38. The framework identified motifs associated with transcription 156 

initiation in general, including binding sites for Sp/KLF and ETS family of transcription factors 157 

(Fig. 1d), which align with findings from previous studies36,39,40. Additionally, DeepDETAILS 158 

captured cell-type-specific motifs reflective of cell-type identity. For instance, GATA1 is a 159 

pioneer transcription factor critical for erythroid differentiation and is notably active in K562 160 

cells41. DeepDETAILS learned prominent GATA1-like motifs in K562 cells but not in other cell 161 

types (Fig. 1e). While both models produced similar deconvolution results (Fig. 1d and e), the 162 

“seq only” model demonstrated better learning of DNA syntax compared to the “fused” model 163 

(Fig. 1e). This difference is expected because the “fused” model can partially leverage 164 

accessibility embeddings to infer cell type identity and was designed with a smaller architecture 165 
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for efficiency. Given its hardware-friendly design, we proceeded with the “fused” version for 166 

subsequent analyses in this study. 167 

 168 

DeepDETAILS can deconvolve regulatory signals from a wide variety of bulk sequencing 169 

assays 170 

We assessed DeepDETAILS for its ability to deconvolve regulatory signals from distinct bulk 171 

sequencing assays, including transcription initiation as captured by PRO-cap (Fig. 1d, e and Fig 172 

2a), histone modifications as detected by ChIP-seq (H3K27ac, H3K4me1, H3K4me3, Fig. 2b~d 173 

and Supplementary Fig. 3a~c, respectively), and pause-release dynamics through PRO-seq 174 

(Supplementary Fig. 3d). Each assay captures different aspects of regulatory processes at varying 175 

resolutions: ChIP-seq provides broader signals, while PRO-cap/seq offers base-pair resolution. 176 

Despite these differences in assay types and data characteristics, DeepDETAILS consistently 177 

performed well across all assays, demonstrating its robustness and versatility. This capability 178 

makes it an invaluable tool for analyzing complex biological samples with mixed cell 179 

populations. 180 

 181 

Deconvolution by DeepDETAILS matches or exceeds performance of canonical supervised 182 

direct-prediction methods 183 

DeepDETAILS operates in a deconvolution setting, where it only has access to bulk signals and 184 

not the desired prediction target (cell-type-specific signals). Despite facing a more challenging 185 

learning task than previous deep learning studies (Fig. 1b), we evaluated its performance against 186 

published fully supervised models for sequence learning36,37. The assessment employed another 187 

simulation setup where a set of bulk sequencing libraries were created by combining signals 188 
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from five different cell lines (Methods) that maximized or minimized the pairwise similarity of 189 

chromatin accessibility profiles between cell lines when data is available (Supplementary Fig. 190 

4a). This approach aimed to assess how effectively DeepDETAILS could handle samples with 191 

varying cell population structures. For example, we simulated two sets of bulk libraries capturing 192 

nascent transcription initiation: A673, HCT116, human umbilical vein endothelial cells 193 

(HUVEC), K562, and MCF 10A (maximized similarity) and Caco-2, Calu3, GM12878, LNCaP, 194 

and MCF-7 (minimized similarity, all simulation formulas are available in Supplementary Table 195 

2). We used DeepDETAILS to reconstruct signal tracks of initiation, pause-release, and histone 196 

H3K4me3/H3K27ac modifications for each cell line, and compared its performance with two 197 

state-of-the-art supervised models: Puffin-D36 and Enformer37. Puffin-D was developed for 198 

predicting transcription initiation, which we also repurposed to study pause-release by training 199 

separate models using the ground truth (Methods). Predicted profiles of histone modifications 200 

from Enformer were retrieved from the original study37. Since Enformer predicts signals at 201 

128bp resolution, we binned the predictions from both DeepDETAILS and Puffin-D to 128bp to 202 

match the resolution. We compared the similarity between the predictions (DeepDETAILS, 203 

Puffin-D, and Enformer) and the actual signal tracks for each cell type using Pearson’s r as 204 

reported in the original studies (Fig. 3a). DeepDETAILS achieved similar performances to state-205 

of-the-art supervised models (Pearson’s r for DeepDETAILS: 0.709 (initiation), 0.719 (pause-206 

release), 0.767 (histone modification); other models: 0.726, 0.734, 0.679, respectively) (Fig. 3a). 207 

Additionally, since both DeepDETAILS and Puffin-D make predictions at base pair resolution, 208 

and the assays for studying transcription initiation and pause-release (PRO-cap/3′ of CoPRO) 209 

yield base pair resolution profiles, we tested the performances of the models in recovering the 210 

dominant transcription start sites (TSSs) and pausing sites at 1-bp resolution. We demonstrated 211 
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that DeepDETAILS achieved comparable performance to state-of-the-art models with large 212 

receptive fields in predicting dominant TSSs and pausing sites. Specifically, DeepDETAILS 213 

obtained Pearson’s r values of 0.800 for TSSs and 0.837 for pausing sites, closely matching the 214 

0.817 and 0.836 scores of Puffin-D (Fig. 3b and c; Supplementary Fig. 4b and c). This 215 

performance is particularly impressive given that DeepDETAILS was trained on simulated bulk 216 

data (mixture of 5 cell lines), whereas Puffin-D and Enformer were trained on ground truth bulk 217 

data for each cell line. 218 

 219 

DeepDETAILS outperforms statistical deconvolution tools in cross-modality settings 220 

Statistical tools are widely used in deconvolving bulk profiles with references of the same 221 

modality22–26. These tools consider bulk sequencing profiles as linear combinations of signals 222 

from each cell type and calculate cell-type-specific signals by solving a system of equations22–26. 223 

However, the references, which are typically single cell profiles, may not be available for assays 224 

that are technically difficult to be performed at single cell resolution (e.g., PRO-cap). 225 

DeepDETAILS addresses this limitation by enabling cross-modality deconvolution. It utilizes 226 

references from one modality (sc/snATAC-seq) to deconvolve bulk profiles of another modality 227 

(e.g., PRO-cap), thereby overcoming the hurdle of unavailable references for certain assays. Due 228 

to the fact that open chromatin regions (i.e. ATAC-seq signals detected) may not have regulatory 229 

signal from other processes (e.g. PRO-cap signal detected, Supplementary Fig. 1), canonical 230 

statistical methods for same-modality deconvolution may not work for a cross-modality setting, 231 

because they operate under the assumption that aggregating reference signals for each cell type 232 

can reproduce the bulk data. 233 

 234 
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To evaluate the performance of DeepDETAILS in cross-modality deconvolution, we compared it 235 

with several statistical deconvolution methods – BayesPrism23, CIBERSORTx22, BLADE24, and 236 

DSA42 – using simulated bulk samples (Fig. 3d and e). Although DeepDETAILS provides 237 

predictions at base-pair resolution, statistical tools typically generate count tables for genes or 238 

regions. For a fair comparison at the same resolution, we added up predictions from 239 

DeepDETAILS for 1 kb regions, and used statistical tools to reconstruct read counts tables in the 240 

same 1kb peak regions (Methods). DeepDETAILS demonstrated superior performance compared 241 

to statistical methods, as expected (Fig. 3d and e). It achieved the highest Lin’s concordance 242 

coefficients (CCC) when comparing values for peaks within each cell type: 0.938 for initiation, 243 

0.949 for pause-release, and 0.780 for histone modifications. The best-performing statistical 244 

methods yielded CCCs of 0.864, 0.876, and 0.632, respectively (Fig. 3d). Similarly, 245 

DeepDETAILS excelled when comparing peak values across different cell types with CCCs of 246 

0.748, 0.793, and 0.647 for initiation, pause-release, and histone modifications, outperforming 247 

the statistical methods’ results of 0.493, 0.530, and 0.466 (Fig. 3e and Supplementary Fig. 4d). In 248 

addition to evaluating how closely predicted values align with observed ones through a 249 

correlation metric (CCC), we also assessed the precision of our predictions by calculating an 250 

error metric (root mean squared error, RMSE). DeepDETAILS reconstructed read counts for 251 

each cell type with highest accuracy compared to other methods, as evidenced by mean overall 252 

RMSEs of 0.947 (Supplementary Fig. 4e). Additionally, statistical deconvolution methods 253 

usually require multiple bulk samples22–24,42 or reference samples25, DeepDETAILS only need 254 

one bulk and reference sample, which enables its broader applications in research projects of 255 

different scales and purposes. 256 

 257 
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DeepDETAILS works robustly in complex settings 258 

Many factors can significantly impact the accuracy and reliability of deconvolution outcomes. 259 

Therefore, we aimed to evaluate the performance of DeepDETAILS under more demanding 260 

conditions. First, we examined the robustness of DeepDETAILS when applied to libraries with 261 

varying sequencing depths. We simulated bulk and reference libraries across three distinct 262 

sequencing depth categories: excellent, good, and acceptable (Methods). DeepDETAILS 263 

maintained consistent performance levels, with minimal reductions observed as the sequencing 264 

depths of the libraries decreased. Specifically, using CCC as a metric, within-cell-type 265 

comparisons demonstrated limited performance decline when transitioning from excellent 266 

sequencing quality to good quality (range of decreasing: 0.004 to 0.025, Fig. 4a), and from good 267 

to acceptable quality (range of decreasing: 0.034 to 0.097, Fig. 4a). Similar trends were observed 268 

for across-cell-type comparisons (Supplementary Fig. 5a). These results indicate that 269 

DeepDETAILS exhibits robust performance across different sequencing depths, making it a 270 

reliable tool for deconvolution analysis even under suboptimal conditions. 271 

 272 

Cell type composition in human tissues can be highly complex; therefore, a key attribute of 273 

deconvolution methods is their capacity to effectively accommodate this variation in 274 

heterogeneity. We simulated bulk libraries containing 5 to 10 cell types and assessed 275 

DeepDETAILS’ performance across three sequencing depth conditions. We found that the 276 

number of cell types in the bulk library has only a minimal impact on both within- and across-277 

cell-type CCCs. Specifically, the inclusion of one additional cell type results in a decrease of 278 

0.003 in within-cell-type CCC (Fig. 4b) and 0.010 in across-cell-type CCC (Supplementary Fig. 279 

5b). 280 
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 281 

Previous simulations assumed that the bulk and reference samples originated from the same 282 

source and shared identical cell type ratios. Expanding DeepDETAILS’ ability to work with 283 

unmatched samples—i.e., those from different sources or with varying cell type proportions—284 

would significantly enhance its practicality. To evaluate DeepDETAILS’ capability, we 285 

simulated two distinct groups of samples: one group featuring an even distribution of cell types 286 

and another dominated by a single cell type (comprising 60% of the total). “matched 287 

deconvolution” was defined as using reference and bulk samples from the same group, while 288 

“unmatched deconvolution” involved pairing samples from different groups (Fig. 4c). The 289 

simulated unmatched settings were designed to represent extreme scenarios with large 290 

fluctuations in cell type ratios. However, it is important to note that typical fluctuations across 291 

different human tissue samples are usually small (Supplementary Fig. 5c) as indicated in the 292 

ENCODE snATAC-seq experiments set3. By demonstrating robust performance under these 293 

extreme conditions, we validate DeepDETAILS’ ability to handle the more common small 294 

fluctuations as well. Our results showed consistent deconvolution outcomes in donor matched 295 

and unmatched settings, with differences in within- and across-cell-type CCCs ranging from 296 

0.014 to 0.026 and 0.031 to 0.082, respectively (Fig. 4c and Supplementary Fig. 5d). 297 

 298 

Consortium-level efforts3,43 have been increasing the availability of human tissue sc/snATAC-299 

seq libraries, so users may not need to generate their own reference libraries to deconvolve their 300 

bulk samples with DeepDETAILS. Reference sc/snATAC-seq libraries provided by consortium 301 

are usually generated by pooling multiple specimens to ensure a comprehensive representation of 302 

different cell types, so there may be more cell types in the reference libraries than the bulk 303 
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sample. To address this, DeepDETAILS employs a “preflight check” step that estimates the 304 

proportions of different cell types within the bulk sample. It further identifies and masks out cell 305 

types present in the reference but absent in the bulk, preventing their influence on subsequent 306 

analyses (Methods). We evaluated the accuracy of the preflight step by blending in 1-5 more 307 

additional cell types into the references used by DeepDETAILS. The results demonstrated high 308 

accuracy (median accuracy of 1.0) in detecting extraneous cell types when the reference libraries 309 

had adequate sequencing depth (Fig. 4d). 310 

 311 

Finally, to validate the robustness of DeepDETAILS for real-world applications, we applied this 312 

method to reconstruct cell-type-specific initiation maps using a bulk liver PRO-cap library (Fig. 313 

4e). We utilized a matched snATAC-seq library from the same donor’s right lobe of the liver44. 314 

To further assess its performance in unmatched conditions, we deconvolved the same bulk 315 

library using another snATAC-seq dataset derived from a different donor’s liver (Fig. 4e). We 316 

observed significant batch effects between the two snATAC-seq libraries, with accessibility 317 

tracks clustering by their sources rather than cell type identities (Fig. 4f and Supplementary Fig. 318 

5e). Additionally, there were noticeable disruptions in pairwise similarities between cell types 319 

across donors. For instance, hepatocytes and endothelial cells showed high similarity (Pearson’s 320 

r = 0.911) in one donor, whereas fibroblasts displayed strong similarity to hepatocytes (Pearson’s 321 

r = 0.896) in another (Fig. 4f). Despite these challenges, DeepDETAILS demonstrated 322 

remarkable resilience by reconstructing consistent tracks across both matched and unmatched 323 

settings. The method achieved strong correlations for all cell types (Fig. 4g): hepatocytes 324 

(Pearson’s r = 0.959), macrophages (r = 0.898), fibroblasts (r = 0.849), and endothelial cells (r = 325 
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0.846). This robust performance underscores DeepDETAILS’ capability to handle batch effects 326 

and donor variability effectively, ensuring reliable results in real-world scenarios. 327 

 328 

A cell-type-specific compendium of regulatory maps in human tissues 329 

Projects such as the NIH Roadmap Epigenomics Program45 and ENCODE3 have significantly 330 

advanced our understanding of gene regulation across various human tissues and developmental 331 

stages. However, these initiatives primarily utilized bulk sequencing techniques, which report 332 

signals from mixed cell populations rather than focusing on individual cell types. To address this 333 

limitation, we developed a comprehensive resource comprising regulatory maps specific to 334 

different cell types across the human body. This resource enhances our ability to understand 335 

transcription regulation, annotate noncoding regions of the genome, and prioritize noncoding 336 

genetic variants associated with diseases. Using DeepDETAILS, we deconvolved bulk ChIP-seq 337 

datasets from the ENCODE project, focusing on key histone modifications including H3K4me1, 338 

H3K4me3, and H3K27ac, in tissues for which snATAC-seq references were available. 339 

Additionally, we generated genome-wide maps for transcription initiation at promoters and 340 

enhancers across 10 human tissues and applied DeepDETAILS to deconvolve their cell-type-341 

specific components. (Fig. 5a and Supplementary Fig. 6a). The resulting compendium includes 342 

massive regulatory profiles across 20 organs, 39 tissues, and 86 distinct cell types. All datasets 343 

are publicly available through our web portal (https://details.yulab.org), where users can explore 344 

the deconvolved results by assay type and biosample category.  The portal also includes an 345 

interactive genome browser for rapid visualization of signal distributions across cell types, along 346 

with downloadable files for custom downstream analysis.  347 

 348 
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To demonstrate the quality of our compendium, we identified regulatory elements exhibiting 349 

cell-type-specific activity within individual organs (Methods). These elements were enriched for 350 

genetic variants associated with specific biological functions or disease, aligning with the known 351 

roles of the cell types. For instance, in the heart, cardiomyocytes directly influence the electrical 352 

properties and ion channel functions that regulate the duration of the QT interval during 353 

repolarization46. Our analysis revealed an enrichment of variants associated with these processes 354 

specifically in cardiomyocytes, but not in other cardiac cells (Fig. 5b). Cardiac fibroblasts and 355 

heart smooth muscle cells play key roles in vascular remodeling, plaque formation, and fibrosis, 356 

all of which contribute to the development and progression of coronary artery disease47,48. Trends 357 

of enrichments were observed specifically in these cell types but not in cardiomyocytes (Fig. 5c). 358 

Similar cell-type-specific enrichments were detected for other tissues, including hepatocytes in 359 

liver related to complement factor B levels and T-cells in lung concerning COVID-19 severity 360 

(Supplementary Fig. 6b and c). To further assess the accuracy of the deconvolved tracks, we also 361 

validated them against 98 known cell-type-specific markers49,50 for 26 cell types. We observed 362 

on average a 17-fold enrichment of signals in the promoter regions of cell-type-specific markers 363 

in the corresponding deconvolved tracks (Supplementary Fig. 6d). All these suggest that 364 

DeepDETAILS accurately reconstructed signals specific to each cell type. 365 

 366 

DeepDETAILS compendium facilitates the understanding of disease etiology 367 

High-throughput sequencing has revolutionized our ability to study the etiology of various 368 

diseases, providing unprecedented insights into genetic and molecular mechanisms51. However, 369 

analyzing bulk libraries presents unique challenges due to the complexity of signals arising from 370 

diverse cell types within tissues. This mix of signals can obscure meaningful patterns, leading to 371 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2025. ; https://doi.org/10.1101/2025.04.02.646189doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.02.646189
http://creativecommons.org/licenses/by-nc/4.0/


potential misattribution or overlooking critical dysregulations in specific cell populations. 372 

DeepDETAILS compendium addresses these challenges by enabling researchers to dissect 373 

regulatory signals at cell-type level within bulk samples, thereby enhancing our understanding of 374 

disease etiology.   375 

 376 

Primary sclerosing cholangitis is a liver disease characterized by chronic inflammation and bile 377 

duct scarring, ultimately leading to liver damage and failure (Fig. 6a). However, the underlying 378 

cause of the inflammation remains poorly understood. Genome-wide association studies 379 

(GWAS) have identified over 300 variants associated with PSC52–54; however, pinpointing causal 380 

variants remains challenging, in part due to the complex structures of linkage disequilibrium55. 381 

To better understand the molecular mechanisms underlying PSC, we utilized the reconstructed 382 

cell-type-specific regulatory maps in DeepDETAILS compendium for transcription initiation, 383 

H3K4me1, H3K4me3, and H3K27ac modifications in the human liver’s right lobe. We then 384 

generated cell-type-specific enhancer-promoter interaction (E-P) networks using the activity-by-385 

contact model56 with deconvolved histone modification signals as inputs. The predicted E-P 386 

interaction maps were refined by removing enhancer candidates lacking deconvolved eRNA 387 

transcription. Through this approach, we revisited GWAS-identified PSC-associated variants and 388 

identified rs5757584, located within an enhancer that is specifically active in liver-resident 389 

macrophages (Kupffer cell) (Fig. 6b). The inferred E-P interaction map suggested that this 390 

enhancer regulates a nearby gene, platelet-derived growth factor subunit B (PDGFB). To 391 

validate this finding, we compared the transcriptional initiation activity of PDGFB across cell 392 

types to its expression profile in published liver scRNA-seq data50, observing high concordance 393 

between our results and the scRNA-seq dataset (Supplementary Fig. 7a). Furthermore, this E-P 394 
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interaction was also supported by an independent eQTL study57, which demonstrated that the C-395 

to-T mutation negatively impacted the expression of PDGFB in lymphocytes (Supplementary 396 

Fig. 7b). Previous studies have shown that the secretion of PDGF from macrophages can help 397 

suppress the inflammatory response58,59. Therefore, one potential etiology of PSC could be that 398 

individuals carrying alternative alleles at rs5757584 exhibit impaired PDGFB-mediated immune 399 

regulation in Kupffer cells, resulting in a prolonged inflammatory response and increased 400 

susceptibility to liver damage. Notably, hepatocytes account for approximately 70% of liver’s 401 

regulatory signals (Supplementary Fig. 7c), suggesting that cell-type-specific effects in non-402 

hepatocytes populations like Kupffer cells could be easily overlooked in bulk-level analyses 403 

(Supplementary Fig. 7d). Without the cell-type-specific dissection of regulatory processes 404 

provided by DeepDETAILS, the functional role of this variant, both in terms of gene regulation 405 

and disease etiology, might have remained undetected (Supplementary Fig. 7d). 406 

  407 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2025. ; https://doi.org/10.1101/2025.04.02.646189doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.02.646189
http://creativecommons.org/licenses/by-nc/4.0/


Discussion 408 

Various high-throughput sequencing assays have significantly advanced our understanding of 409 

transcriptional regulation. However, it is difficult to use bulk sequencing assays to identify 410 

distinct regulatory patterns in tissue samples composed of diverse cell types. While advances in 411 

single-cell sequencing (e.g., scRNA-seq, snATAC-seq) allow high-resolution study of regulatory 412 

layers in complex biosamples, numerous other assays are still not applicable at the single-cell 413 

level. Current machine learning techniques that leverage single-cell sequencing data focused on 414 

smoothing technical noises in sc/snATAC-seq sequencing libraries and better representing the 415 

clustering structures of the cell population in the sample60–64. When data from another single-cell 416 

modality is available, such as scRNA-seq, cross-modality data imputation can be performed to 417 

further refine the representations65–68. 418 

 419 

Our DeepDETAILS utilizes the sc/snATAC-seq for a completely different goal: DeepDETAILS 420 

reconstructs regulatory processes in different cell types at base pair resolution in a bulk 421 

sequencing sample when provided with a sc/snATAC-seq reference. We showed the broad 422 

applicability and robust performance of our method in such a cross-modality deconvolution 423 

setting. One of the most important applications of DeepDETAILS is its ability to link genetic 424 

variants to specific cell types and regulatory pathways, offering new insights into disease 425 

mechanisms. For example, the identification of rs5757584 as a variant in a macrophage-specific 426 

enhancer affecting PDGFB expression highlights how this tool can pinpoint cell-type-specific 427 

functional elements that potentially contribute to disease pathogenesis. This finding underscores 428 

the importance of studying regulatory variation at cell-type-specific level and demonstrates 429 
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DeepDETAILS’ potential to bridge gaps in our understanding of genotype-phenotype 430 

relationships. 431 

 432 

We further applied DeepDETAILS to deconvolve bulk sequencing libraries across 39 different 433 

human tissues and generated cell-type-specific regulatory maps regarding transcription initiation 434 

and histone modifications (H3K4me1, H3K4me3, and H3K27ac). We anticipate the 435 

comprehensive and high-resolution cell-type-specific regulatory maps in our portal can help 436 

identify molecular mechanisms underlying various pathologies, offering new avenues for 437 

therapeutic intervention. 438 

 439 

While DeepDETAILS represents a leap forward, it is not without limitations. The tool’s 440 

effectiveness depends on the availability and quality of sc/snATAC-seq reference dataset. 441 

Additionally, the current implementation of DeepDETAILS is not optimized for repressive 442 

regulatory processes such as the tri-methylation of lysine 27 on histone H3 protein, and 443 

modifications on the architecture may be needed. In addition, statistical deconvolution methods 444 

usually benefit from a larger number of input bulk samples, so it is possible that these tools may 445 

perform better when more data is available. 446 

 447 

Multi-modal foundation models demonstrate potential in generalizing to unobserved cell types 448 

and could potentially be repurposed for tasks like deconvolution69,70. However, these models 449 

require extensive sequencing data and significant computational resources; for instance, 450 

EpiBERT needed around 740 ATAC-seq datasets. Their effectiveness also depends on the 451 

similarity between regulatory motifs in trained and novel cell types. In contrast, DeepDETAILS’ 452 
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broad applicability across various cell types, regardless of their similarity, enhances its utility in 453 

advanced genomic analyses without the need for vast datasets or powerful computing 454 

infrastructure. 455 

 456 

In conclusion, DeepDETAILS represents a new advance in the field of genomics, offering 457 

researchers a novel framework for dissecting cell-type-specific regulatory landscapes from bulk 458 

sequencing data. By enabling fine-grained analysis of transcription regulation and linking genetic 459 

variation to disease mechanisms, this tool has the potential to accelerate our understanding of 460 

complex traits and inform new approaches to disease treatment.  461 
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Methods 486 

Processing sequencing libraries 487 

Single-nucleus ATAC-seq libraries for different cell lines and primary cells were processed with 488 

10x Genomics Cell Ranger ATAC 2.1.0 and only fragments from called cells were kept for 489 

downstream usage. Run-on sequencing libraries (GRO-cap, PRO-cap, CoPRO, and PRO-seq) 490 

data sets were processed with pipelines introduced in our previous publication11 and the protocol 491 

is available at our GitHub repository. Histone ChIP-seq libraries were processed with the 492 

ENCODE ChIP-seq pipeline version 2. All sequencing data and analytical pipelines were 493 

managed by BioQueue71. 494 

 495 

Simulating bulk tissue datasets for different targeting assays 496 

For run-on libraries (GRO-cap, PRO-cap, CoPRO, and PRO-seq) where only the ends of 497 

sequencing reads were considered in downstream analysis, we sampled signals from the 498 

corresponding bigWig files with a binomial sampler, so that the sampled signal at locus 𝑖 for cell 499 

line 𝑘 follows 𝑠!" ∼ ℬ(𝑁!" , 𝑝!), where 𝑁!" is the observed signal value from the original library, 500 

and 𝑝! is the sampling ratio for cell line 𝑘. For histone modification ChIP-seq where the entire 501 

reads were considered, we downsampled the aligned reads in the tagAlign files following a 502 

uniform distribution 𝒰(𝑝!). In both cases, the sampled signals for each cell line were merged 503 

together and served as the bulk tissue signal tracks. Peaks were called from the simulated bulk 504 

libraries using PINTS11, dREG72, and MACS273 for GRO/PRO-cap, 3′ of CoPRO/PRO-seq, and 505 

ChIP-seq, respectively. We surveyed published run-on and histone modification libraries, and 506 

used the 25th, 50th, and 75th percentiles of their sequencing depth as the criteria of acceptable, 507 

good, and excellent simulated bulk library (Supplementary Table 3 for the cutoff for each assay). 508 
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 509 

Simulating pseudo-bulk sc/snATAC-seq datasets 510 

We used a two-stage hierarchical sampling strategy to simulate sc/snATAC-seq libraries for 511 

tissues. In the first stage, we uniformly sampled 𝑚" single cells based on their barcodes from the 512 

corresponding sc/snATAC-seq library for that cell line / primary cell (𝑘 in this case); in the 513 

second stage, for each sampled cell 𝑐!, we randomly selected 𝑛! reads from the fragments pool of 514 

that cell, where 𝑛! ∼ 𝒩(𝜇, 𝜎). We used the (𝜇, 𝜎) pairs (10000, 833), (5000, 333), and (1000, 515 

167) to simulate excellent, good, and acceptable quality sc/snATAC-seq libraries as suggested in 516 

a previous study74, respectively. The final pseudo-bulk sc/snATAC-seq libraries were obtained 517 

by pooling all sampled fragments together. Sampling procedures in both stages were done 518 

without replacement. 519 

 520 

DeepDETAILS 521 

The expanded architectural specifications of DeepDETAILS, including the number of layers, 522 

channels, filter sizes, and activation functions, are presented in Supplementary Fig. 2. At its core, 523 

both versions of DeepDETAILS feature bodies composed of dilated CNN layers designed to 524 

learn embedding from the 4096 bp input DNA sequence. These embeddings are passed to 𝐾 525 

pairs of heads for predicting the shape of the signals and the absolute counts in each cell type for 526 

the center 1000 bp window (𝐾 is the number of cell types in the bulk sample), similar to a 527 

previous study75. The predictions for each cell type are adjusted using a scale function that zeros 528 

out predictions from an inaccessible region in specific cell types. The scaled predictions from 529 

individual cell types are aggregated to form the predicted bulk signal. Both peak regions 530 
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identified from the bulk libraries as well as background regions with similar GC content 531 

distributions will be used for training. 532 

 533 

Scale function for cell type k at region r:  534 

 𝑠(𝑘, 𝑟) = #$%(",()
∑ #$%(!,()+,!
"#$

 535 

where RPM(𝑘, 𝑟) gives the depth-normalized ATAC-seq signals at the center 1-kb region of r in 536 

the corresponding cell type k, and 𝜖 = 10-./ to avoid dividing by zeros. 537 

 538 

During training, DeepDETAILS minimizes the root mean squared logarithmic error (RMSLE) 539 

between the predicted and observed signals. To prevent the model from collapsing into trivial 540 

solutions where multiple branches predict similar outputs, DeepDETAILS implements a 541 

redundancy penalty76. This penalty discourages excessive correlation between predictions from 542 

different cell types and improves the overall robustness of the model. Mathematically, the loss 543 

function can be expressed as: 544 

ℒ = <1
𝑀>>?ln?1 + 𝑥0,1DE − ln?1 + 𝑥!,2EE

3
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;

2<!

;
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;
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 545 

where 𝑀 is the number of regions in the batch, 𝐿 is the length of the prediction window, 𝐾 is the 546 

number of cell types, 𝛼 is a positive constant to balance the RMSLE and the penalty, and 𝒞 is the 547 

correlation matrix of predictions. 548 

 549 
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Comparing DeepDETAILS with supervised learning methods 550 

We trained two sets of Puffin-D36 models, and each model was fed by downsampled signals from 551 

five sources (cell types) as the authors did in their original manuscript. In one setting, Puffin-D 552 

models were trained to predict signals for transcription initiation and pause-release in the other. 553 

The combinations of cell lines were identical to what we used in our simulated bulk samples for 554 

testing the performance of DeepDETAILS and the formulas are available in Supplementary 555 

Table 2. Predictions of Enformer were retrieved from the original publication37 and only 556 

predictions for biosamples that were also tested in this study were kept for comparison. 557 

Comparisons were evaluated using chromosomal cross validation. 558 

 559 

Benchmark performances on cross-modality deconvolution for statistical methods 560 

Statistical deconvolution methods were used to purify total read counts among regions of interest 561 

in 1-kb resolution for each mixed cell type. For CIBERSORTx22, we applied S-mode batch 562 

correction and lowered the filtering threshold for average gene expression to 0, as suggested in 563 

the original publication. For BayesPrism23, BLADE24, and DSA42, we used the default 564 

parameters. Invalid predictions (not a number) were replaced by small random values drawn 565 

from a distribution that ln(𝑋) ∼ 𝒩(0,1) and scaled by 0.1, when calculating correlation 566 

coefficients between the predicted values and the groundtruth. Additional bulk samples were 567 

simulated since statistical methods require multiple bulk samples to run. 568 

 569 

Preflight check 570 

When preparing the data files for running DeepDETAILS’ deconvolution workflow, a preflight 571 

procedure will be executed by default. This step trims the reference dataset by only keeping cell 572 
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types consistently present in both the reference and bulk datasets. We implemented this 573 

functionality in a three-steps manner: first, we build a signature matrix as previously 574 

mentioned22, then we use n-SVR to estimate the fractions of different cell types in the bulk 575 

library as suggested by a previous study22, lastly cell types with very low presence are removed 576 

(<3.5%) unless the preflight check is manually bypassed with option (--skip-preflight). While 577 

this method may yield lower accuracy in estimating the absolute fraction (median of 𝑅3: 578 

0.567~0.827) compared to intra-modality simulations77, it remains effective for identifying cell 579 

types absent from the bulk sequencing library. 580 

 581 

Generation of PRO-cap libraries for human tissues 582 

Human tissue samples were obtained as part of the ENCODE consortium’s coordination effort. 583 

PRO-cap library preparations for two biological replicates, each containing 10 million cells, were 584 

performed separately as previously described5,78,79. In brief, cells were permeabilized, followed 585 

by run-on reactions. RNA was then isolated, and two rounds of adaptor ligation and reverse 586 

transcription were carried out using custom adaptors. 5′ cap selection was performed between 587 

adaptor ligations through a series of enzymatic steps. RNA was washed followed by 588 

phenol:chloroform extractions, and ethanol precipitations between reactions, all under RNase-589 

free conditions. After PCR amplification and library clean-up, libraries were sequenced on an 590 

Illumina NovaSeq lane. 591 

 592 

Deconvolution of human tissue samples 593 

For the deconvolution of bulk human tissue samples, we utilized DeepDETAILS with its default 594 

settings. For reference dataset selection, we prioritized single-nucleus ATAC-seq (snATAC-seq) 595 
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data derived from the same tissue and donor. In cases where such data were unavailable, a 596 

composite reference was constructed using all available snATAC-seq datasets for that tissue. The 597 

specific reference dataset used for each deconvolution experiment is documented on our web 598 

portal. Each deconvolution workflow was performed in duplicate, with average signal values 599 

being reported to ensure robustness of the results. For histone ChIP-seq experiments, we merged 600 

the deconvolved signals on the two strands and reported binned signals (10 bp) to the portal. 601 

 602 

Identification of cell-type-specific regulatory elements and variant enrichment analysis 603 

We identified candidate regulatory elements exhibiting cell-type-specific activity in different 604 

tissues/organs using t-tests, by comparing the depth-normalized signal of a specific assay in a 605 

given cell type to that of all other cell types. We controlled for false discovery rate using 606 

Benjamini-Hochberg’s approach and considered regions with an FDR < 0.05 and log fold 607 

change > 2 as significant. To assess enrichment of variants, we applied Fisher’s exact test for 608 

each trait. Within each organ, we identified GWAS variants located in bulk peak regions and 609 

categorized them into two groups: those residing in cell-type-specific regions and those in non-610 

specific regions. We then further classified these variants based on their association with a 611 

specific trait and constructed 2 × 2 contingency tables to facilitate odds ratio calculations. 612 

Finally, for each cell type, we calculated the odds ratio of trait-associated variants occurring in 613 

cell-type-specific regions compared to non-specific regions and reported the results. Trait-cell-614 

type pairs with adjusted p-values (Benjamini-Hochberg) smaller than 0.05 were considered 615 

significant, indicating a statistically significant enrichment of trait-associated variants in cell-616 

type-specific regions. 617 

 618 
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Prediction of enhancer-promoter interaction 619 

Activity-by-contact model was used for predicting E-P interactions56. For the cell-type specific 620 

E-P maps, we used pseudo-bulk ATAC-seq track for the cell and deconvolved H3K27ac ChIP-621 

seq signal as the measurement of enhancer activity. For the bulk E-P map, we used the entire 622 

pseudo-bulk ATAC-seq and bulk H3K27ac ChIP-seq as the enhancer activity measurement. In 623 

both cases, we used Hi-C tracks averaged from multiple human biosamples as the measurement 624 

of contact frequency. Predicted interactions were further pruned by removing pairs where the 625 

candidate enhancer anchors do not have eRNA transcription (less than 20 counts per million 626 

reads). 627 

 628 

Code availability 629 

The source code of DeepDETAILS is publicly available at https://github.com/haiyuan-yu-630 

lab/DeepDETAILS, scripts used to generate results that are reported in this study can be 631 

retrieved from https://github.com/haiyuan-yu-lab/DeepDETAILS-analysis. 632 

 633 

Data availability 634 

All deconvolved tracks are freely available on our portal. Sequencing data retrieved from public 635 

databases (NCBI GEO and ENCODE portal) are listed in Supplementary Tables 1. Cell type 636 

annotations for sc/snATAC-seq experiments were obtained from the ENCODE portal and the 637 

corresponding accession for each deconvolution run is available on our online portal. The data 638 

used for the eQTL analysis described in this manuscript were obtained from the GTEx Portal on 639 

12/13/2024. 640 

  641 
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Figure Legends 807 

Fig. 1. Architecture of DeepDETAILS. a, Schematic overview of the DeepDETAILS 808 

framework. The model takes three inputs: (i) DNA sequence information, (ii) cell-type-specific 809 

accessibility profiles derived from sc/snATAC-seq data, and (iii) ‘bulk’ sequencing signals. 810 

DeepDETAILS is optimized to minimize the difference between real and predicted bulk tracks. 811 

Note that the “seq only” version of DeepDETAILS does not integrate sequence information with 812 

accessibility features extracted by the GRU module (dashed box). b, The difference in training 813 

approaches between quasi-supervised methods (e.g. DeepDETAILS) and supervised models (i.e. 814 

Puffin-D36 Enformer37, etc.). c, Workflow of simulating bulk and reference libraries for 815 

evaluating the performance of cross-modality deconvolution. In d and e, DeepDETAILS 816 

deconvolved a simulated bulk PRO-cap library consisting of three cell types: K562, GM12878, 817 

and MCF-7. The ground truth signals were labeled as “Initiation”, while deconvolved signals 818 

from the “seq only” and “fused” models were shown separately. Sequence motifs contributing to 819 

the prediction in each cell type were shown in the “I×G” (input × gradient) tracks. In d, motifs 820 

known to be important for transcription initiation in general were highlighted. In e, motifs 821 

associated with cell-type-specific identity were highlighted (e.g., GATA1-like motif for K562, 822 

with the consensus sequence GATAA/TTATC). Unless explicitly specified, inverse hyperbolic 823 

sine (asinh) transformation was applied to initiation and chromatin accessibility by default to 824 

account for their large dynamic range (e.g., between promoters vs enhancers). The asinh 825 

transformation is similar to log transformation but supports negative values. 826 

 827 

Fig. 2. DeepDETAILS works for multiple bulk sequencing assays. a, DeepDETAILS 828 

deconvolved simulated bulk transcription initiation profiles captured by GRO/PRO-cap from 829 
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both promoters (labeled in red boxes) and enhancers (labeled in orange boxes). b~d, 830 

DeepDETAILS also successfully deconvolved bulk histone modification signals, including: b for 831 

H3K27ac, c for H3K4me1, and d for H3K4me3. Candidate regulatory elements such as 832 

enhancers and promoters were annotated based on ENCODE cCRE definitions80. 833 

 834 

Fig. 3. Performance comparison of DeepDETAILS with state-of-the-art methods. a, 835 

DeepDETAILS was compared against state-of-the-art supervised deep learning models, Puffin-D 836 

(for transcription initiation/pause-release) and Enformer (for histone modification). The 837 

evaluation used Pearson’s correlation coefficient (r) at 128-bp resolution with log-transformed 838 

read counts. Dashed line shows the median of r that the corresponding supervised model 839 

archived. 𝑛 = 10. b, Pearson’s correlation coefficient (r) was calculated to evaluate consistency 840 

between DeepDETAILS’ reconstructed dominant transcription start sites (TSSs) and actual 841 

dominant TSSs in the ground truth GRO/PRO-cap libraries. The analysis sampled 5000 peak 842 

regions for this assessment. c, Similarly, Pearson’s correlation coefficient (r) was used to assess 843 

consistency between DeepDETAILS’ reconstructed dominant pause sites and actual dominant 844 

sites at the 3′ end of the CoPRO libraries. This evaluation also utilized a sample of 5000 peak 845 

regions. d and e, Performance comparison between DeepDETAILS and statistical deconvolution 846 

tools (1-kb resolution). d for within-each-cell-type evaluation, and e for across-cell-type 847 

evaluation. Black boxes atop each panel indicate the units used for CCC calculations. 848 

 849 

Fig. 4. Performance evaluation of DeepDETAILS under challenging cases. a, 850 

DeepDETAILS’ performance by varying the sequencing depths of bulk and reference libraries. 851 

For each sequencing technique, two sets of bulk-reference pairs were simulated, and 852 
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deconvolution was repeated three times (𝑛 = 6 per technique). b, Evaluation of DeepDETAILS’ 853 

performance on deconvolving bulk transcription initiation sequencing libraries with different 854 

numbers of cell types in the bulk and reference (𝑛 = 3 × 𝑘 for a simulated setting with k cell 855 

types). c, Schematic (left) and results (right) of using DeepDETAILS to deconvolve bulk 856 

samples with unmatched reference libraries (ratios of cell types do not match in the bulk and 857 

reference, 𝑛 = 6). For a ~ c, evaluation was done by calculating the CCC within each cell type 858 

as done in Fig. 3d. d, Schematic of the preflight check step (left) and the accuracy of preflight in 859 

masking out cell types in the reference but not in the bulk (right, 𝑛 = 91 for each condition). e, 860 

Schematic of evaluating DeepDETAILS with real datasets. f, Genome-wide correlation analysis 861 

(Pearson’s r) suggested the pairwise similarity relationships between different cell types were 862 

disrupted in the two reference samples. g, The deconvolved signals from DeepDETAILS 863 

maintained the pairwise similarity (Pearson’s r) relationships regardless of the choice of 864 

reference libraries.  865 

 866 

Fig. 5. DeepDETAILS compendium. a, Summary of DeepDETAILS compendium. Solid color 867 

indicates tissues for which there is at least one corresponding bulk sequencing library available 868 

in our compendium. Number of dissected cell types in each tissue was labeled in the 869 

corresponding bars. b, Variants associated with the trait QT interval are enriched in genomic loci 870 

that are specifically active in cardiomyocytes. c, Variants associated with the disease coronary 871 

artery disease are enriched in genomic loci that are specifically active in cardiac fibroblasts and 872 

smooth muscle cells. 873 

 874 
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Fig. 6. DeepDETAILS compendium brings new insight into disease etiology. a, Schematic of 875 

primary sclerosing cholangitis. Figure created with BioRender. b, Genome browser view of 876 

deconvolved signals at the PDGFB locus in the right lobe of human liver. The variant affecting 877 

the macrophage-specific enhancer is highlighted at the top of the panel, with the disrupted E-P 878 

interaction marked in red. Tracks for transcription initiation and histone modifications are 879 

displayed in their original scale. 880 
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