
 

 
 
 

 
 

 Comprehensive Atomic-Scale 3D Viral-Host Protein Interactomes 
Enable Dissection of Key Mechanisms and Evolutionary Processes 

Underlying Viral Pathogenesis 
  
  
  
  

Le Li*1,2, Priyamvada Guha Roy*3,4,5, Yilin Liu1,2, Zizhao Zhang1,2, Dapeng Xiong1,2, Ram 
Savan6, Nandan S. Gokhale6,7, Luis M Schang^8,9, Jishnu Das^3,4, Haiyuan Yu^1,2 

  
1Weill Institute of Cell and Molecular Biology, Cornell University, Ithaca, NY 14853 

2Department of Computational Biology, Cornell University, Ithaca, NY 14853 
3Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260 

4Center for Systems Immunology, Departments of Immunology and Computational & Systems 
Biology, University of Pittsburgh, Pittsburgh, PA 15260 

5Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, 
PA 15261 

6Department of Immunology, University of Washington, Seattle, WA 98195 
7Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 

45229 
8Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853 

9Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 
14853 

  
*Co-first authors - These authors contributed equally to this work. 

^Corresponding authors - Haiyuan Yu (haiyuan.yu@cornell.edu), Jishnu Das (jishnu@pitt.edu) 
and Luis M. Schang (luis.schang@cornell.edu) 

  
 

 
 
  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2025. ; https://doi.org/10.1101/2025.03.28.645946doi: bioRxiv preprint 

https://doi.org/10.1101/2025.03.28.645946
http://creativecommons.org/licenses/by-nc/4.0/


 

Abstract 
Viral-human protein interactions are critical for viral replication and modulation of the host immune 
response. Structural modeling of these interactions is vital for developing effective antiviral 
therapies and vaccines. However, 99% of experimentally determined binary host-viral interactions 
currently lack structural information. We aimed to address this gap by leveraging computational 
protein structure prediction methods. Using extensive benchmarking, we found AlphaFold to be 
the most accurate structure prediction model for host-pathogen protein interactions. We then 
predicted the structures of 11,666 binary protein interactions across 33 viral families and created 
the most comprehensive atomic-scale 3D viral-host protein interactomes till date (https://3d-
viralhuman.yulab.org).  

By integrating these interactomes with genetic variation data, we identified population-specific 
signatures of selection on variants coding for interfaces of viral-human interactions. We also found 
that viral interaction interfaces were less conserved than non-interface regions, a striking trend 
that is opposite to what is observed for host interfaces, suggesting different evolutionary 
pressures. Systematic analyses of interface sharing between host and viral proteins binding to 
the same host protein revealed mutation rate-dependent differences in interface mimicry. Similar 
mutation rate-dependent differences were seen in the interface sharing between viral proteins 
binding to a host protein. We also found that the patterns of E6 protein binding to KPNA2 differed 
between high- and low-risk oncogenic human papillomaviruses (HPVs), and clustering based on 
these binding patterns allowed the classification of HPVs with unknown oncogenic risk. Our 
interface mimicry analyses also unveiled a novel mechanism by which herpes simplex virus-1 
UL37 suppresses the antiviral immune response through disruption of the TRAF6-MAVS 
signalosome interaction.  

Overall, our comprehensive 3D viral interactomes provide a resource at unprecedented scale and 
resolution that will enable researchers to explore how variation and signatures of selection 
influence viral interactions and disease progression. This tool also facilitates the identification of 
conserved and unique interaction patterns across viruses, empowering researchers to generate 
testable hypotheses and ultimately accelerate the discovery of novel therapeutic targets and 
intervention strategies. 
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Introduction 
As obligate parasites, viruses depend on human cellular proteins—including for entry, 
transcription, translation, metabolism, genome replication, trafficking, and egress—for their 
replication, relying on a complex network of protein-protein interactions to accomplish this goal 
(Lasso et al. 2019). Interactions between viral and host proteins also play a key role in modulating 
innate immune responses. Studying the structure and dynamics of these interactions can reveal 
new targets for antiviral therapies and vaccines and help develop strategies to bolster host 
defenses (de Chassey et al. 2014; Cakir et al. 2021; Wierbowski et al. 2021). For instance, the 
discovery of CCR5 as a crucial co-receptor for HIV1 attachment led to the development of 
maraviroc, a CCR5 antagonist with strong anti-HIV activity (Fätkenheuer et al. 2005). Moreover, 
elucidating the binding interface between the SARS-CoV-2 spike protein and the human ACE2 
receptor has been instrumental in the development of therapeutic agents targeting this interaction 
(Lan et al. 2020; Ferrari et al. 2021; Shoemaker et al. 2022). Integrating structural information 
with genetic data can uncover key variants that modulate the immune cascade and systemic 
response to viral infections (Chhibbar et al. 2024; Wierbowski et al. 2021). Despite their 
importance, however, structural data for most viral-host protein interactions remain scarce due to 
the challenges of experimentally resolving complex structures. This gap underscores the need for 
comprehensive 3D modeling of viral-human protein interactions, which could provide key 
molecular insights into viral pathogenesis and inform the development of targeted antiviral 
strategies.  

Computational methods have been widely used to infer structural information for protein 
interactions, from predicting interaction interfaces to modeling entire protein complexes (Xiong et 
al. 2024; Abramson et al. 2024; Bryant and Noé 2023; Lin et al. 2023; Ketata et al. 2023; 
Dominguez, Boelens, and Bonvin 2003)(Jumper et al. 2021; Abramson et al. 2024; Evans et al. 
2022);(Xiong et al. 2024; Abramson et al. 2024; Bryant and Noé 2023; Lin et al. 2023; Ketata et 
al. 2023; Dominguez, Boelens, and Bonvin 2003). We evaluated the ability of state-of-the-art 
methods, including AlphaFold (Jumper et al. 2021; Abramson et al. 2024; Evans et al. 2022), 
ESMFold (Lin et al. 2023), DiffDock-PP (Ketata et al. 2023), HADDOCK (Dominguez, Boelens, 
and Bonvin 2003), and ECLAIR+HADDOCK (Wierbowski et al. 2021), in generating structural 
models for host-viral protein interactions using a comprehensive benchmark dataset of 509 host-
pathogen protein interactions with PDB structures (Wierbowski et al. 2021). Despite relying on 
paired multiple sequence alignments (MSAs), which are largely incomplete for host-viral protein 
interactions due to the rapid evolution of viral proteins, lack of homologous sequences, and 
asymmetric co-evolution between host and viral proteins, AlphaFold had the best performance in 
terms of predicting overall structures and specific interface residues. Therefore, we used 
AlphaFold to predict the co-complex structures of all biochemically verified viral-human protein 
interactions in the literature to date, creating the most comprehensive 3D viral-human 
interactomes to date, spanning 11,666 direct, binary protein interactions across 33 viral families. 

We leveraged this dataset to examine the evolutionary dynamics of host-virus interactions and 
identified population-specific selective pressures acting on host interface residues. Further, our 
analysis revealed that viral interface residues exhibited a distinct pattern of conservation 
compared to non-interface residues within viral proteins. Moreover, the difference in evolutionary 
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constraints between viral interface and non-interface residues followed a pattern fundamentally 
different from what was observed in endogenous host-host protein interactions, indicating 
differential selective pressures. We examined the extent of interface sharing between host-host 
and host-virus protein interactions and found that, across viral families, mutation rate largely 
dictated patterns of interface mimicry. As a validation, the binding interfaces of E6 protein from 
human papillomaviruses (HPVs) on different human proteins served as a distinguishing factor 
between non-oncogenic and high- and low-risk oncogenic types. As another independent 
validation, we identified a novel mechanism through which herpes simplex virus-1 (HSV1) UL37 
inhibits the antiviral immune response by interrupting the interaction between TRAF6 and MAVS.  

Our compendium of 3D viral interactomes is a powerful resource for studying the dynamics and 
structural basis of host-viral interactions. It provides a unique platform for integrating multi-omic 
data to examine how genetic and proteomic variations in pro- and anti-viral host factors influence 
interactions with viral components and modulate downstream immune activation. This 
comprehensive framework not only enables the identification of key interaction patterns but also 
empowers researchers to generate testable mechanistic hypotheses, driving the discovery of 
novel therapeutic targets and intervention strategies. 

Results 

3D Viral-Human Protein Complex Structural Modeling 
Understanding the structural basis of viral-human protein interactions is critical for uncovering 
viral replication mechanisms and may help to identify novel therapeutic targets. Due to 
experimental challenges, however, structural data for these interactions remain scarce. 
Computational modeling provides a promising alternative for generating 3D structural models of 
viral-human complexes, enabling large-scale investigations of protein interactions at an atomic 
resolution. 

To identify the most reliable computational approach for modeling viral-human protein 
interactions, we systematically benchmarked state-of-the-art protein structure prediction 
methods, including AlphaFold, ESMFold (Lin et al. 2023), DiffDock-PP (Ketata et al. 2023), 
HADDOCK (Dominguez, Boelens, and Bonvin 2003), and ECLAIR+HADDOCK (Wierbowski et 
al. 2021).  

We first evaluated the accuracy of overall structure prediction of these methods using our 
benchmark set of 509 pathogen-host protein interactions with PDB structures (Wierbowski et al. 
2021). AlphaFold outperformed all other methods in terms of DockQ score, interface root mean 
square deviation (iRMSD), and ligand RMSD (lRMSD) (Figures 1A-1C). Specifically, over 25% of 
AlphaFold predictions were classified as high quality (DockQ score ≥ 0.8, green portion in Figure 
1A), while approximately 50% fell within the medium to high range (DockQ ≥ 0.49, yellow portion 
in Figure 1A). In contrast, the best alternative method produced fewer than 5% high quality 
predictions and less than 10% acceptable predictions (DockQ ≥ 0.23). Additionally, AlphaFold 
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achieved significantly lower iRMSD (<5 Å vs. ~15 Å) and lRMSD (<10 Å vs. >30 Å) compared to 
other methods, underscoring its superior structural accuracy. 

Accurately predicting binding interfaces is key to modeling protein interactions. Therefore, we 
specifically evaluated these tools for their performance in predicting experimentally known  
interface residues. We further included state-of-the-art interface prediction tools including 
DELPHI, D-Script, DLPred, and ECLAIR, together with the structure prediction methods 
mentioned above. Our pathogen-host benchmark set contains both bacterial and viral pathogens. 
We further divided the benchmark set into bacterial-host and viral-host subsets. 

Across the whole benchmark set and viral-human and bacterial-human subsets, AlphaFold 
exhibited the highest precision (>0.4 vs. <0.2 for the best alternative method, left panel of Figure 
1D) while maintaining a recall close to the best-performing method (~0.5, right panel Figure 1D). 
The resulting F1 score of AlphaFold (0.42) significantly outperformed other tools (≤0.24, Figure 
1E), further reinforcing its superior reliability in interface prediction. Notably, bacterial-human 
interactions were modeled more accurately than viral-human interactions, which aligns with 
observation that higher mutation rates and genetic diversity among viruses than bacterial result 
in lower-quality MSA (Alqahtani and Almutairy 2023) (Supplementary Figure 1A). 

Given that MSAs play a crucial role in AlphaFold-based predictions, we first examined the impact 
of MSA depth on inter-species (pathogen-host) interactions compared to intra-species 
interactions. We found that while most intra-species interactions had a high-depth of joint MSAs 
(median depth ~1000), over 50% of pathogen-host interactions lacked joint MSAs, and most of 
the remaining ones had low coverage (<100 sequences per protein) (Figure 1F). This disparity 
directly affected prediction quality, as interface precision, recall, and structural similarity metrics 
(iRMSD and lRMSD) were consistently higher for intra-species interactions than for pathogen-
host interactions (Figures 1G-1H), which has been reported previously (Zhu et al. 2023; Lupo, 
Sgarbossa, and Bitbol 2024; Tsuchiya, Yamamori, and Tomii 2022). Similar results were obtained 
for the subsets of novel interactions (not used in training of AlphaFold) only (Supplementary 
Figure 1B-C) 

Given the recent development of AlphaFold3 (Abramson et al. 2024), we also directly compared 
its performance with AlphaFold-Multimer (AFM) on viral-human interactions with available PDB 
structures (May 2024). To ensure a rigorous evaluation, we focused only on heterodimers 
corresponding to which there were known interfaces based on co-crystal structures. The results 
(Supplementary Figure 1D) indicate that AlphaFold3 exhibited higher recall, but lower precision 
for interface residue prediction compared to AFM. Therefore, we decided to apply AFM 
(henceforth referred to as AlphaFold) for large-scale viral-human interaction modeling. 

In summary, despite the challenges of low-coverage joint MSAs for inter-species interactions, we 
find that AlphaFold is currently the best tool for accurate structure prediction, including precise 
interface predictions, significantly outperforming other state-of-the-art methods. Therefore, we 
applied AlphaFold to construct comprehensive 3D viral-human interactomes (Methods).  
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Creating Comprehensive 3D Viral-Human Interactomes 
We collected viral-human protein-protein interaction data from VirHostNet 2.0, IntAct (release 
2022.02.03), and BioGRID (version 4.4.209). After mapping proteins to UniProt IDs and retrieving 
taxonomy information, we obtained 65,823 interactions. Based on experimental evidence, 
interactions were categorized as binary (direct interactions, 14,845) or co-complex (membership 
in the same complex, 51,866). This study focuses exclusively on the 11,666 binary viral-human 
interactions remaining after filtering. Of the 11,666 viral-human and 2,838 viral-viral biochemically 
validated binary protein interactions we curated, approximately 99% and 95% of the viral-human 
and viral-viral interactions, respectively, did not have a corresponding structure (Figure 2A). This 
highlights the major gap in the availability of structural data for viral protein interactions which is 
critical for understanding the molecular basis of disease pathogenesis.    

To this end, we predicted the co-complex structures of all collected binary viral-human and viral-
viral interactions using AlphaFold (Methods; Figure 2A). The resulting dataset includes 360 
viruses, across 31 families, which are visualized in a circular plot based on cellular site of 
replication, genetic materials (DNA or RNA, segmented or not, genome sense and single or 
double stranded), family, and whether they are enveloped or not (Figure 2B). 

This comprehensive collection of 3D viral interactomes serves as a powerful resource for 
generating and testing hypotheses for single-virus studies or large-scale viral studies. Unlike a 
traditional viral-human interactome that lacks structural information, a 3D interactome provides 
structural information that reveal key functional insights (e.g. binding sites and pockets), which 
allows for a precise understanding of interaction mechanisms, identification of potential 
therapeutic targets, and development of structure-based drug design strategies. The 3D viral-
human interactomes of HIV-1 group M subtype B/isolate PCV12 and Epstein-Barr virus (EBV) 
strain GD1 are visualized in Figures 2C and 2D, respectively. 

Accurate Predictions of Previously Solved Structures and 
Biochemically Validated Interface Residues  
Among the 11,666 viral-human interactions, 1.11% (129 interactions) had PDB structures, which 
were included in the benchmark to validate our interface predictions. The average precision and 
recall of the predicted interfaces were approximately 0.5 and 0.45, respectively, with over half of 
the interactions exhibiting good precision and recall over 0.5 (Figure 1B). To further test whether 
AlphaFold was able to learn previously unseen structures, we explored its performance on 25 
interactions that were previously unseen by AlphaFold and observed a similar distribution and 
values of precision and recall (0.48 and 0.42, respectively, Supplementary Figure 2).  

When the predicted and known PDB structures for the benchmark set were compared, the 
predictions closely matched the PDB structures. For the SARS-CoV-2 NS6 and RAEL 1 
interaction (NS6_SARS2 and RAE1L_HUMAN, respectively), the known PDB structure (7vph, 
released on January 19, 2022) covered only a 21 amino acid segment of NS6. AlphaFold perfectly 
predicted the existing structures (TM-score: 0.99, RMSD: 0.47) and showed reasonable 
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performance for the unsolved viral protein segments (shown in red in Figure 3A), despite the lack 
of a joint MSA. AlphaFold also accurately modeled the the known PDB structure (8cx0, released 
on February 15, 2023) for the interaction between HIV-1 Vif and PEBB (VIF_HV1H2 and 
PEBB_HUMAN, respectively, TM-score: 0.83, RMSD: 1.87), despite a low-depth MSA (99 
sequences) for Vif and a joint MSA depth of 2, and predicted the structures of the unsolved 
segment of PEBB (shown in pink in Figure 3B). Similar performance was observed for the 
predictions of Yaba-like disease virus 16L and B2L11 interaction (16L_YLDV and 
B2L11_HUMAN, respectively, 6tqq, TM-score: 0.83, RMSD: 1.17 Å, Figure 3C) and Cedar virus 
protein G and EFNB2 interaction (G_9MONO and EFNB2_HUMAN, respectively, 6p7y, TM-
score: 0.83, RMSD: 1.7 Å, Figure 3D). The high concordance between the predictions and known 
structures suggested that the performance of AlphaFold was generalizable to all other viral-
human interactions in our database.   

Overall, we identified several predicted interaction interfaces that play key roles in mediating the 
interactions between the proteins that have been validated through mutagenesis studies. One 
such example includes the structural predictions for the interactions between herpes simplex virus 
1 (HSV-1) (or human herpesvirus 1, HHV1) ICP0 protein and human UB2D1 and UB2E1 proteins, 
interactions which counteract host antiviral defense mechanisms (Smith, Boutell, and Davido 
2011). The immediate-early protein ICP0 promotes viral gene expression and replication by 
leveraging its E3 ubiquitin ligase activity to induce degradation of several cellular defense 
proteins. ICP0 engages with UBE2D1 and UBE2E1, which are E2 ubiquitin-conjugating enzymes, 
to target cellular proteins for degradation by the proteasome, creating a more favorable 
environment for viral gene expression and replication. These interactions allow ICP0 to counteract 
host cell intrinsic and innate antiviral defenses by inducing degradation of antiviral proteins such 
as PML and Sp100 (Boutell and Everett 2013). In a double-blinded cross-validation with a 
comprehensive study investigating twelve point mutations on HSV1 ICP0 that affect its 
interactions with UB2D1 and UB2E1 and the consequent phenotypes, including E3 ubiquitin 
ligase activity, conjugated ubiquitin colocalization, promyelocytic leukemia protein degradation, 
complementation of plaque formation efficiency, and derepression of gene expression (Vanni et 
al. 2012), we found that our predicted interfaces highly overlapped with the Y2H-validated 
interfaces (Figure 3E). In the predicted structure of HSV1 ICP0 and UB2D1 complex (left panel 
of Figure 3E), we identified V118, T120, and P154 as interface residues (SASA > 15 Å!, ΔSASA 
> 1 Å!), which influence various interaction-related phenotypes. Similarly, in the predicted 
structure of ICP0 and UB2E1 complex (right panel of Figure 3E), we identified V118, T120, R150, 
and P154 as interface residues, and of these, three positions were experimentally verified. The 
resulting validation rates for the predicted interfaces ranged from 0.75 to 1 (top panel of Figure 
3E). 

We also found experimental data showing mutagenesis of G99 at the interaction interface of EBV 
BHRF1 protein (EAR_EBVB9) with B2L11 (B2L11_HUMAN) disrupted binding of the two proteins. 
BHRF1, an anti-apoptotic protein, binds to B2L11, a pro-apoptotic protein, to manipulate cell 
death pathways, promoting cell survival and viral persistence (Desbien, Kappler, and Marrack 
2009); Figure 3F). The mutant lost this interaction and cells expressing this mutant were no longer 
protected from apoptotic signals. AlphaFold also successfully predicted the interface residue 
(Q192) critical for the interaction between Derlin-1 (DERL1_HUMAN) and the human 
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cytomegalovirus (HCMV) protein US11 (US11_HCMV), which has been experimentally validated 
(Lilley and Ploegh 2004; Xiaoyang Liu et al. 2019), Figure 3G). HCMV US11 exploits the Derlin-
1-dependent endoplasmic reticulum-associated protein degradation pathway to degrade major 
histocompatibility complex class I molecules, allowing the virus to evade immune surveillance 
(Cho, Lee, and Jun 2013; Cho et al. 2013). We also predicted de-novo the TRAF6 binding motif 
(1099PVEDDE1101A4) on the HSV-1 protein UL37 (Xueqiao Liu et al. 2008). Site specific mutation 
of E1101 significantly impacts binding of these proteins and prevents downstream NF-kappaB 
activation. Further, we predicted an interface residue (W125) essential for binding of Sendai virus 
C protein to Alix (Oda et al. 2021), which is crucial for viral budding.  

Most of these interactions were predicted using low-quality viral protein MSAs and in the absence 
of joint MSAs, indicating that AlphaFold was able to infer certain intrinsic patterns from sequence 
context alone. This highlights the capability of in-silico methods in predicting co-complex 
structures of viral-human interactions, even when comprehensive MSAs are not available. 

Interface Residues on Human Proteins Show Signatures of 
Positive Selection   
Infections are one of the most significant drivers of selection pressure on the human genome, 
with patterns of selection shaped by various aspects of host-pathogen interactions—such as 
exposure duration, geographical spread, morbidity and mortality, and environmental events 
(Fumagalli et al. 2011; Karlsson, Kwiatkowski, and Sabeti 2014). Differences in these dynamics 
result in varying selection patterns across populations, resulting in differing burdens of infectious 
diseases. Host-viral protein interactions are critical for viral replication and propagation. 
Additionally, certain interactions between viral and host proteins trigger signalling cascades 
essential for the host immune response against the virus, which are often downmodulated by 
virus-host protein interactions. The underlying host genome plays a key role in modulating this 
immune response (Chhibbar et al. 2024). Studying these host-viral protein interactions provides 
critical insights into differential disease burden for certain infectious diseases.  
 
Given that interaction interfaces play a key role in modulating protein interactions, we 
hypothesized that these interface regions would be under stronger constraints than other regions 
of the same proteins. To test this hypothesis, we estimated the fixation indices (FST) for all coding 
variants within human proteins from our database using the 1000 Genomes data for all population 
pairs (EUR, AFR, EAS, SAS). Fixation index is a measure of allelic divergence between 
populations and a large difference in allelic frequency between populations can be an indicator of 
selection (Wright 1965; Lewontin and Krakauer 1973). These coding variants were then 
categorized into interface and non-interface variants based on structurally-resolved interactome. 
Thereafter, we tested the difference in proportion of interface vs non-interface variants with high 
FST to identify virus specific signatures of selection in different populations (Figure 4A). Stratifying 
variants based on whether they were at the interface or not, revealed population-specific patterns 
of selection for different viruses (Figure 4B). SNPs with high rates of allelic divergence for the 
South-Asian population appear to colocalize at the interface of protein-protein interactions for a 
large proportion of the viruses analyzed. Moreover, protein interfaces engaged in interactions with 
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EBV, HPV11, and HPV18 viral proteins showed evidence of selection in multiple populations. 
When the same analysis was repeated using variants coding for amino-acid residues at any 
surface of proteins involved in interactions with different viruses, not just those engaged in 
interactions with the viral proteins, selection was observed only for HPV8 (Figures 4C and 4D). 
Next, we focused on all residues that are at the surface of these proteins. Since interface residues 
are a subset of surface residues, this analysis helps test the specificity of the identified signatures 
of positive selection. There were no signatures of selection for all surface residues, suggesting 
that positive selection occurs specifically at interface and not all surface residues. Similar to the 
surface analysis, when coding variants were stratified based on the hydropathicity and polarity of 
the residues encoded by them, colocalization of high FST was seen only for IAV for the 
hydropathicity based stratification (Figures 4E and 4F) and for none of the viruses for the polarity-
based metric (Supplementary Figure 3).  

Evolutionary Patterns for Interface Residues on Viral Proteins 
Differ from that Seen for Human Proteins 
Humans and viruses are engaged in an evolutionary "arms race.” Interactions between viral and 
human proteins are critical for viruses but cause key alterations to host molecular phenotypes 
that are directly linked to viral pathogenesis. Therefore, while the human genome evolves to resist 
viruses, viruses are under pressure to continuously evolve to evade or modulate host immunity 
(Sironi et al. 2015).  

We aimed to characterize the evolutionary patterns of viral protein residues using longitudinal 
data and compared the mode of evolution between residues at and away from the interface of 
protein interactions with human proteins. To this end, we used the predicted structural information 
from our database to compare the interface and non-interface residues for HIV1 (taxon id: 
211044), SARS-CoV-2 USA-WA1/2020 (taxon id: 2697049), IAV(H1N1, taxon id: 211044), and 
IAV(H3N2, taxon id: 385599), given the constraints of data availability. Frequency distribution of 
amino acids at each position of a protein was compared to a null distribution using Kullback-
Leibler divergence (Figure 4G). Positions with high divergence from random are conserved, while 
those showing small divergences are not conserved. When human protein residues were stratified 
based on their location within or away from interface regions of human protein-protein 
interactions, interface residues were significantly more conserved than non-interface residues 
(Figure 4H), which is in line with expectations as these residues play important roles in maintaining 
these key homeostatic interactions (Wang et al. 2012; Sahni et al. 2015). However, when the 
residues on viral proteins were analyzed, no significant difference in degree of conservation was 
observed for interface and non-interface residues for the proteins of the sexually transmitted blood 
borne and well established in humans HIV1 (Figure 4I). Conversely, for respiratory tract viruses 
emerging into the human population, non-interface residues showed higher degree of 
conservation compared to interface residues (Figure 4I). Viral protein residues at interaction 
interfaces with human proteins are less conserved compared to non-interface residues, which 
differs from the pattern observed for human protein residues interacting with viral proteins. These 
residues may well be involved in interactions with proteins of different hosts and therefore are not 
optimized for interacting with those of any particular one. 
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Extent of Interface Sharing Differs Based on Mutation Rate  

As obligate parasites, viruses have evolved various strategies to hijack host cellular machinery to 
facilitate their replication, and forming interactions with the host protein play an important role in 
this process (Lasso, Honig, and Shapira 2021). Viruses frequently imitate different structural and 
functional properties of host molecules to hijack or interfere with cellular processes, such as 
nucleic acid metabolism and immune response regulation (Lasso, Honig, and Shapira 2021). 
Molecular mimicry can occur at sequence or structure level, including domain and  interface 
mimicry, with interface mimicry being the most common (Guven-Maiorov et al. 2020; Franzosa 
and Xia 2011; Mihalič et al. 2023). Structural mimicry is a widely used strategy by viruses, 
irrespective of their genome size and mode of replication, and significantly shapes host range as 
reported by Lasso et al who studied global structural mimicry, independent of protein 
interactomes, to understand how the human proteome dictates the viral structural space  (Lasso, 
Honig, and Shapira 2021). However, this approach does not account for how viruses with diverse 
global structures can exploit local structural similarities to replicate human protein-protein 
interactions through interface mimicry.  A systematic investigation of viral interface mimics is 
crucial for uncovering how viruses disrupt host interactomes and manipulate signaling pathways 
to their advantage.  Since viruses within the same family often leverage conserved cellular 
pathways for replication through sometimes preserved host protein interactions, a systems level 
understanding of the conserved target protein interaction motifs can help identify shared 
vulnerabilities that can be targeted with antiviral therapeutics (Gordon et al. 2020). 

Given the implications of shared and unique host-viral interfaces, we focused on quantifying the 
extent of sharing between viral-human and human-human protein interactions as well as different 
viral-human protein interactions across protein families using the Dice index (Figure 5A). When 
viruses were separated based on their observed mutation rates, we found that viruses with 
mutation rate >=1e-04 substitution/site/year had significantly higher extent of interaction mimicry 
compared to <1e-04 substitution/site/year (Figure 5B) (Holmes 2003). Counterintuitively, the 
viruses with higher mutation rate had higher extent of sharedness of interaction interfaces 
amongst themselves compared to viruses with lower mutation rates (Figure 5C). The lowest 
extent of shared interfaces was across viruses with higher compared to those with lower mutation 
rates (Figure 5C). To ensure that these patterns were not an artifact of the underlying differences 
in quality of predictions, we compared the distribution of the AlphaFold scores between these 
classes of viruses and found non-significant differences (Supplementary Figures 4A and 4B). 
These trends were also observed when two viruses with different mutation rates which produce 
slow progressing, but major disease were compared (Figures 5D and 5E). When proteins from 
HPVs with high cervical carcinoma risk were compared with proteins from HIV, which has a higher 
mutation rate, HIV proteins had a significantly higher rate of interaction mimicry (Figure 5D). 
However, the difference in extent of sharing amongst HIV proteins and high-risk HPV proteins 
was not significant, but HIV proteins tended to have a higher extent of sharedness (Figure 5E). 
These findings suggest that viruses with high rate of mutation not only have higher rates of 
interface mimicry but also bind to the same human protein interaction interfaces as their other 
viral counterparts (Figure 5F). Given that viruses with lower mutation rates primarily correspond 
to DNA viruses and those with higher mutation rates to RNA viruses, our findings are in line with 
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prior work (Lasso, Honig, and Shapira 2021). Taken together, our results show that viruses with 
lower mutation rates, which often have large genomes preserve interactions by global mimicry, 
not necessarily interface mimicry, limiting the promiscuity of their interactions. However, viruses 
with higher mutation rates are better adapted to bind multiple interaction interfaces and thus fulfill 
the same functions with a minimalistic set of proteins.   

E6 Binding Patterns Segregate High-risk and Low-risk HPVs 
HPVs represent a large family of small dsDNA viruses that infect basal epithelial cells, leading to 
the development of benign and malignant lesions in the skin and mucosa, including those of the 
anogenital, upper respiratory, and digestive tracts (de Martel et al. 2017). HPVs that infect the  
genital tract are categorized into high and low-risk based on their oncogenicity. High-risk HPVs, 
such as HPV16 and  HPV18, are the leading causes of cervical cancer (Longworth and Laimins 
2004; Cohen et al. 2019), whereas infections by low-risk HPVs are primarily associated only with 
benign conditions like warts or hyperplasias, and only occasionally cause cancer (Doorbar et al. 
2012). Previous studies have primarily focused on segregating pathogenic HPVs based on the 
sequence and expression of the oncogenes that code for E6 and E7 proteins (Doorbar et al. 2012; 
Schiffman et al. 2016). In their study, Lasso et al. showed that high and low-risk HPVs can be 
clustered based on the interactions between the viral and human proteins (Lasso et al. 2019). 
While this comparison of the interactomes can reveal differences in global circuits underlying 
disease pathogenesis, they lack the structural information that is critical for deriving mechanistic 
insights. Studying the interaction interfaces of these protein interactions is crucial, as they 
determine binding specificity, interaction strength, and the potential for competitive or allosteric 
regulation, providing deeper insight into the differences in the oncogenic potential of HPVs. 

E6 is necessary for HPV replication and oncogenesis. During HPV infection, E6 deregulates cell 
cycle regulatory pathways to modify the cellular environment of terminally differentiated cells to 
facilitate HPV replication by binding to tumor suppressor proteins, cyclins, and cyclin-dependent 
kinases (Miranda Thomas et al. 2002; Mantovani and Banks 2001; Yim and Park 2005; Burd 
2003; Syrjänen and Syrjänen 1999). This activity also favors carcinogenesis. Structural and 
functional differences between E6 from high and low-risk HPVs have been shown to contribute to 
the increased oncogenic potential of the former (Oh, Longworth, and Laimins 2004; Pal and 
Kundu 2019; Underbrink et al. 2016). Given the large number of reported E6 interactions in 
literature, our dataset provided us with a unique opportunity to systematically study the structural 
differences in the binding patterns of high and low-risk HPV E6 proteins.  

We analyzed all E6 protein interactions from 23 HPVs of differing oncogenic potential, annotated 
based on the Centers for Disease Control and Prevention standards (Saraiya et al. 2015), to 
investigate how E6 proteins from different HPVs utilize human interaction interfaces. We observed 
a significantly lower extent of sharing between high and low risk HPVs compared to that within 
each group (Figure 6A), which is similar to the pattern of sharing observed across all HPV viral 
proteins (Supplementary Figure 5). This difference suggests that E6 from oncogenic and non-
oncogenic HPVs bind to distinct domains on the same human protein, which may result in the 
differential downstream effects of these interactions between high and low-risk HPVs, despite all 
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their E6 binding to the same proteins (M. Thomas and Banks 1999; Drews, Case, and Vande Pol 
2019). From our list of E6 interactors, we prioritized 11 functionally important human proteins that 
interact with E6 from HPVs with known oncogenic classifications and quantified the association 
between E6 binding patterns and HPV oncogenicity using an adjusted normalized mutual 
information (NMI) score (Methods, Figure 6B).  

Among these 11 proteins, KPNA2 had the highest adjusted NMI score, indicating a strong 
association between E6 binding patterns and the oncogenicity of the corresponding HPV. KPNA2 
is a nuclear transport protein which consequently plays roles in cell cycle regulation, DNA repair, 
and transcriptional control (Alshareeda et al. 2015; Christiansen and Dyrskjøt 2013; Ma and Zhao 
2014). Overexpression of KPNA2 has been implicated in cervical cancer development and 
progression via deregulation of the E2F/Rb pathway (van der Watt, Ngarande, and Leaner 2011). 
When the co-complex structures of binary interactions between KPNA2 and E6 from 23 HPV were 
superimposed based on the structure of KPNA2 (cyan, Figure 6C), E6 proteins binding to KPNA2 
could be clustered into four groups: one group of non-oncogenic HPVs, one of oncogenic high-
risk HPVs, one of oncogenic low and high-risk HPV, and one of non-oncogenic and oncogenic 
low and high-risk HPVs. To ensure that this clustering was not influenced by structural prediction 
biases, we compared the distributions of AlphaFold structure quality scores across different HPV 
categories and found no significant differences (right-bottom of Figure 6C), confirming that the 
clustering patterns reflect biologically relevant variations in E6-KPNA2 binding interfaces. The 
individual co-complex structures are presented in Supplementary Figure 6.  

To better understand this clustering, we calculated the Jaccard Index for E6 binding sites on 
KPNA2 across different HPV strains and visualized the results as a heatmap with a hierarchical 
clustering dendrogram (left panel of Figure 6D). The two mixed groups comprising HPV strains of 
differing oncogenic potential could be further subdivided into smaller clusters of similar oncogenic 
potential along the dendrogram. Visualization of the interface residues on the KPNA2 sequence 
(right panel of Figure 6D) revealed that none of the high-risk HPV binds to the N-terminal region 
that binds to importin beta (IBB domain). Instead, they interact with the minor cargo nuclear 
localization signal (NLS) binding domain. In contrast, E6 proteins from non-oncogenic HPVs 
preferentially bind to the IBB. Given that nuclear import is crucial for oncogenic functions of E6, 
the preferential binding of benign E6 proteins to the IBB, potentially interrupting the importin-
𝛼/importin-𝛽 interaction required for nuclear import, may play a role in their reduced oncogenic 
potential (Pal and Kundu 2019; Le Roux and Moroianu 2003; Yi et al. 2020). Our findings align 
with those of Mespiede et al. (Mesplède et al. 2012) who showed that E6 from high-risk HPVs 
predominantly localized in the nucleus, while benign E6 proteins were found in both the cytoplasm 
and nucleus. 

These results indicate that the co-complex structure of the interactions between E6 and KPNA2 
and the binding patterns of E6 on KPNA2 provide strong predictive power for the pathogenicity of 
HPVs. We repeated the analysis and expanded the scope of the analysis to 64 HPVs with E6 
sequences in UniProtKB/Swiss-Prot. We calculated the Jaccard Index for all 64 E6 proteins based 
on the binding sites on KPNA2 to plot a heatmap with a hierarchical clustering dendrogram (Figure 
6E). We identified five clusters based on this heatmap, which were labeled by the HPVs with 
known pathogenic annotations using a majority voting strategy. In this way, we predicted the 
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pathogenic level for all HPVs included in the analyses. For example, HPV41 and HPV63 are likely 
high-risk oncogenic (consistently with the original suggestion by Zur Hausen for HPV41(Grimmel 
et al. 1988)), and HPV23, HPV24, and HPV28 are likely non-oncogenic. The list of predicted 
oncogenic levels of all HPVs is provided in Supplementary Table 1. 

HSV-1 UL37 competes with MAVS for TRAF6 binding to inhibit 
IFN activation 
Our analysis identified interactions between the UL37 inner tegument protein of HSV-1 and the 
human protein MAVS on the same interface on MAVS that interacts with TRAF6. TRAF6 and 
MAVS are components of the RIG-I-like receptor (RLR) signaling pathway which detects viral 
RNA to activate antiviral innate immunity (Figures 7A-B). Detection of viral RNA by RIG-I-like 
receptors triggers the formation of a signaling platform centered on the adaptor MAVS. MAVS 
recruits the E3-ubiquitin ligase TRAF6 through a consensus TRAF6-binding motif within its central 
disordered region. TRAF6 engagement at the MAVS signalosome is required for the activation of 
the transcription factors IRF3 and NF-kB which induce interferons (IFNs), key cytokines that 
establish an antiviral state (Xu et al. 2005; S. Liu et al. 2013; Fang et al. 2017). During HSV-1 
infection, UL37 engages TRAF6 through a TRAF6-binding motif in its disordered C-terminal tail 
to activate NF-κB, which is required for viral replication (Xueqiao Liu et al. 2008). Additionally, 
UL37 inhibits IFN induction by deamidating and inactivating the sensors RIG-I and cGAS during 
HSV-1 infection (Zhao et al. 2016; Zhang et al. 2018). 

We hypothesized that UL37 could further interfere with the RLR-MAVS pathway by competing 
with MAVS for TRAF6 binding to limit IRF3 activation and thus IFN induction. To determine 
whether UL37 can inhibit signaling through MAVS independently of upstream modulation of RIG-
I, we tested whether UL37 can alter IFN induction after MAVS overexpression in 293T MAVSKO 
IFNB1-GLuc reporter cells (Figure 7C). MAVS overexpression is sufficient to drive signaling 
independently of RIG-I activation and Gaussia luciferase (GLuc) induction in these cells is under 
the control of IFNB1 promoter elements (Gokhale et al. 2024). Overexpression of UL37 inhibited 
GLuc induction after MAVS overexpression in a dose dependent manner (Figure 7D). Both wild-
type (WT) and deamidase mutant (C819S) UL37 inhibited antiviral signaling equally, which 
indicates that the suppression of MAVS signaling by UL37 was independent of its enzymatic 
activity (Figure 7E). Indeed, co-immunoprecipitation analysis revealed that UL37 inhibits the 
association between MAVS and TRAF6 (Figure 7F). 

To test whether TRAF6-binding by UL37 was critical for the suppression of MAVS signaling, we 
generated a TRAF6-binding mutant UL37 (E1101A) that neither bound TRAF6 nor activated NF-
κB (Fig. 7G) (Xueqiao Liu et al. 2008). While overexpression of WT UL37 suppressed the 
phosphorylation of IRF3 at S386, a marker of IRF3 activation upon MAVS signaling, 
overexpression of UL37 E1101A did not (Fig. 7F). Similarly, UL37 E1101A did not inhibit the 
induction of IFNB1-GLuc or IFNB1 and IFIT1 transcripts which require IRF3 activation unlike WT 
UL37 (Fig. 7G-H). Moreover, UL37 WT but not UL37 E1101A enhanced the expression of the 
NF-kB-target gene IL8 (Fig. 7H). Together, these data indicate that HSV-1 UL37 limits the 
association between TRAF6 and the MAVS signalosome, thereby inhibiting the activation of IRF3 
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and consequently, IFN production. This effect likely contributes to the inability of HSV-1 lacking 
UL37 to inhibit IFN induction during infection (Zhao et al. 2016; Zhang et al. 2018). 

Discussion 
Interactions between viral and human proteins are required for viral replication and pathogenesis. 
Analyzing the structures of these interactions provides key insights into the mechanisms utilized 
by viruses to trigger and evade host defenses (de Chassey et al. 2014; Cakir et al. 2021; 
Wierbowski et al. 2021). We collected a comprehensive set of 11,666 binary physical viral-human 
and 2,838 viral-viral protein-protein interactions for all human-infecting viruses in the literature. 
However, approximately 95% of these protein interactions lack structural information. After 
comparing multiple state-of-the-art methods, we applied AlphaFold (Jumper et al. 2021; 
Abramson et al. 2024; Evans et al. 2022) to model all these interactions to create the most 
comprehensive 3D viral interactomes till date (Jumper et al. 2021; Abramson et al. 2024; Evans 
et al. 2022; Lin et al. 2023; Ketata et al. 2023; Dominguez, Boelens, and Bonvin 2003). Analysis 
of this large-scale dataset revealed unique evolutionary features of the host and viral interaction 
interfaces, distinct patterns of interface mimicry by viral proteins based on mutation rates, and 
characteristic differences in interaction domains between oncogenic and benign HPVs. 
Furthermore, we uncovered a novel mechanism through which UL37 disrupts the innate immune 
response.      

The evolutionary ‘arms race’ between humans and viruses results in a continuous cycle of 
adaptation and counter-adaptation shaping the genomes of both. Infections by pathogens, 
including viruses, exert selective pressure on the human genome driving population divergence 
(Van Blerkom 2003). Several studies have shown higher rates of selective pressure on immune 
genes, particularly those that encode proteins that directly interact with viral proteins (Meyerson 
et al. 2014; Barreiro et al. 2009; Lasso et al. 2019). Exome scans comparing single-locus 
estimates of FST with the exome-wide background revealed higher rates of selection at loci 
coding for interface residues of human-viral protein interactions compared to other residues, 
reflecting their functional importance in mediating these interactions and modulating the 
downstream signalling cascades (Chhibbar et al. 2024). However, viral protein residues were 
found to have lower or not significantly different conservation rates for interface residues 
compared to non-interface residues—indicating the need for rapid adaptation at these sites to 
evade or modulate host immunity as well as to replicate in different species.  

One common mechanism adopted by viral proteins to modulate host immune response and  
improve fitness is molecular mimicry. Structural mimicry is a common strategy employed by 
viruses, regardless of their genome size or replication method, and plays a crucial role in 
determining host range as reported by Lasso et al. (Lasso et al. 2019). A systematic investigation 
of the patterns of interface sharing between viral-human and human-human as well as different 
viral-human protein interactions revealed that viruses with high mutation rates ensure higher 
interaction promiscuity by exploring different interaction interfaces than other viral proteins and 
have higher rates of interface mimicry compared to viruses with lower mutation rates. Differences 
in patterns of structural mimicry was also observed for HPVs based on oncogenic risk. Quantifying 
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the relationship between the binding patterns of the oncoprotein E6 from different HPVs and their 
oncogenic potential revealed a strong association for several functionally important proteins. In 
particular, the interaction with KPNA2 revealed distinct interface usage patterns segregating high- 
and low-risk HPVs, underscoring the role of nuclear import in oncogenesis of HPV. By 
systematically clustering HPVs based on E6 binding interfaces on multiple human proteins, we 
predict oncogenic risk for uncharacterized HPVs. These differential surface interactions highlight 
how different HPVs of varying oncogenic risk differ not only in global patterns of protein 
interactions but also in the specific interface usage (Lasso et al. 2019), and it can augment 
sequence-based approaches for pathogen classification and risk assessment, for HPV as well as 
other viruses.  

While systemic analysis of the dataset revealed key insights into pan-viral mechanisms of 
pathogenesis, targeted examination of specific interactions allowed us to generate testable 
mechanistic hypotheses for individual viral proteins. Analyzing the structure of the interaction 
between UL37, a HSV-1 protein, and TRAF6, which is critical for HSV-1 replication, revealed 
significant mimicry of the MAVS binding region on TRAF6. TRAF6 and MAVS interaction is critical 
for induction of IFNs to establish an antiviral state (Xu et al. 2005; S. Liu et al. 2013; Fang et al. 
2017). Using mutant and WT UL37, we showed that TRAF6 binding by UL37 suppresses MAVS 
signaling and, subsequently, IFN activation. The inhibition of IFNs by the deamidation activity of 
UL37 has been previously reported, but we show a novel mechanism through which UL37 inhibits 
IFNs (Zhao et al. 2016; Zhang et al. 2018). 

Through systematic and targeted analysis of our 3D interactome, we demonstrated that this new 
resource can significantly expand the scope of viral research, facilitating mechanistic 
interpretation and experimental validation of critical hotspots that are likely to influence viral 
replication, immune evasion, or disease outcomes. Despite its great potential, limitations still 
remain, presenting opportunities for future improvements. Evaluating predictions for multi-subunit 
viral-human complexes is challenging. Therefore, our dataset is currently limited to binary 
interactions. However, integrating additional data sources, such as the structurally resolved 
human protein interactome, can potentially overcome this limitation and enable the analysis of 
multi-component assemblies, uncovering cooperative or competitive interactions that influence 
infection dynamics. Moreover, while computational tools, such as AlphaFold, can be powerful 
tools to address limitations of experimental methods, biochemical and biophysical assays are 
essential for refining or validating these models, particularly when predicted structures suggest 
novel interaction modes. Nevertheless, through extensive benchmarking we have shown that 
AlphaFold is currently the best tool for accurate structure prediction, showing high concordance 
between predicted and real structures of the benchmark set of interactions. We and others are 
actively developing new computational tools that improve current interface prediction approaches 
(Xiong et al. 2024). These tools can readily be incorporated into our 3D viral interactome modeling 
pipeline to enhance downstream inference.   

We present the largest and most comprehensive resource of 3D structural models for host-viral 
protein interactions till date. Through systematic analysis of this structural data, we uncovered 
unique functional and evolutionary features of critical interfaces, providing novel insights into the 
molecular mechanisms underlying viral infection and pathogenesis. Our collection of interactomes 
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offers a unique platform for integrating multi-omic data to investigate how genetic and proteomic 
variations in host immune factors can impact viral interactions and modulate disease response. 
This integrated approach can help researchers uncover crucial pan-viral interaction patterns and 
formulate testable hypotheses, ultimately contributing to the development of new therapeutic 
targets and treatment strategies. 

 

Methods 

Data collection 
Benchmark datasets: We used the list of known pathogen-host interactions from one of our 
previous works (Wierbowski et al. 2021), containing 509 viral-human and bacteria-human 
interactions with known co-complex structures in the PDB database. To facilitate benchmarking 
of docking and docking-like methods, we also prepared structures of individual proteins that have 
the highest sequence coverage and are not part of any co-complex structures. For intra-species 
interactions, we randomly selected 200 human-human interactions with available PDB structures. 

3D structure prediction for binary interaction 
AlphaFold-Multimer: We utilized AlphaFold-Multimer v2.2.0, downloaded on March 10, 2022, 
along with all requisite databases from the AlphaFold GitHub (https://github.com/google-
deepmind/alphafold). Installation was performed on our local machines. Structure predictions 
were executed using the pre-trained models (trained on all PDBs released before April 2018) with 
default parameters. 

ESMFold: For predicting the 3D structures of binary interactions using ESMFold, we 
concatenated the sequences of individual proteins using a colon “:” separator, indicating a 
significant gap and guiding the model to output two distinct chains. ESMFold was downloaded 
from the ESM GitHub repository (https://github.com/facebookresearch/esm) on March 20, 2023, 
and predictions were made using the default settings of the trained model. 

DiffDock-PP: We obtained DiffDock-PP from its GitHub repository 
(https://github.com/ketatam/DiffDock-PP) on January 24, 2024, and followed the provided 
installation instructions. The co-complex structures were predicted using the trained models with 
default parameters, utilizing the prepared single protein structures from the benchmark dataset. 

HADDOCK and ECLAIR: Docking simulations were performed using HADDOCK 2.4 (release 
date: September 2020). We conducted both unguided docking and docking guided by predicted 
interface residues. For the latter, interface residues were predicted using our previously 
developed method, ECLAIR (Meyer et al. 2018). 
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Interface prediction 
For methods generating complete co-complex structures, we identified interface residues by 
evaluating their solvent-accessible surface area (SASA). Residues were classified as interface 
residues if their SASA exceeded 15 square angstroms and the difference in SASA between their 
bound and unbound states was greater than 1 square angstrom. 

For interface prediction using DELPHI, D-Script, and DLPred, we downloaded the respective 
packages from their sources: DELPHI from GitHub (https://github.com/lucian-ilie/DELPHI), D-
Script from GitHub (https://github.com/samsledje/D-SCRIPT), and DLPred from their website 
(http://qianglab.scst.suda.edu.cn/dlp/). Predictions were conducted using default parameters for 
all methods. As there is no universal cutoff for prediction scores, we selected the cutoff yielding 
the highest F1 score in our benchmark for each method. 

Measurement metrics 
To comprehensively evaluate the structure-level qualities of the predicted co-complex structures, 
we employed a suite of metrics, including DockQ score, TM-Score, RMSD, iRMSD (interface 
RMSD), and lRMSD (ligand RMSD). TM-Score and RMSD were calculated using the open-source 
tool MM-align (Mukherjee and Zhang 2009), while DockQ, iRMSD, and lRMSD were computed 
using the DockQ package (Basu and Wallner 2016). For the predicted interface residues, we 
calculated individual precisions and recalls for each interaction. Additionally, we computed the 
overall precision and recall for all interactions combined, representing the macro average of the 
individual precisions and recalls. 

To fairly evaluate the segregation of binding sites on the same human protein by E6 proteins from 
high-risk and low-risk HPVs—particularly when the number of segregated clusters differs—we 
adjusted the normalized mutual information (NMI) by dividing it by the average NMI values 
obtained from random permutations with the same number of clusters and obtained the so-called 
adjusted NMI score. 

Estimating 𝐹!" for interface and non-interface variants 
Dataset Processing and 𝐹"# Estimation: The 1000 Genomes Phase 3 dataset was obtained 
from the UCSC Genome Browser (Perez et al. 2025), and samples were grouped into four 
superpopulations: European (EUR), South Asian (SAS), East Asian (EAS), and African (AFR). 
Coding variants were annotated using BISQUE (Meyer, Geske, and Yu 2016). Pairwise 𝐹"# values 
for each variant were computed using VCFtools (v0.1.15) (Danecek et al. 2011) for the following 
population comparisons: EUR vs. SAS, SAS vs. EAS, EAS vs. AFR, and AFR vs. EUR. The 75th 
percentile 𝐹"# threshold was then determined. 
Selective pressure analysis on viral interaction interfaces: For viruses with at least 20 
predictions, coding region variants in human interactors were classified as interface or non-
interface. To assess selective pressure on viral interaction interfaces, we compared the proportion 
of variants in interface and non-interface regions with 𝐹"# values above the 75th percentile across 
population pairs.  
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Estimating KL divergence values for interface and non-interface 
variants 
Sequence retrieval and alignment: Protein sequences for selected viruses (H1N1, H3N2, HIV, 
and SARS-CoV-2) were downloaded from the NCBI Virus database (“NCBI Virus,” n.d.). The 
taxonomy ID with the highest number of predictions in our database was used for sequence 
selection. These sequences were aligned to their respective reference proteins (used for interface 
prediction) using MAFFT (v7.471) (Katoh et al. 2002). 
 
Residue Classification and KL Divergence Calculation: Aligned residues were classified as 
interface or non-interface based on our predictions. KL divergence was computed at each position 
to measure how amino acid distributions deviate from the background distribution. The KL 
divergence, 𝐷$%, is defined as: 

𝑫𝑲𝑳(𝑷||𝑸) 	= 	.⬚
⬚

𝒊

𝑷(𝒊)𝒍𝒐𝒈(𝑷(𝒊)/𝑸(𝒊)) 

where 𝑃(𝑖) is the frequency of amino acid 𝒊 at a given position, and 𝑄(𝑖) is its frequency in the 
background distribution. 

Statistical Comparison: We used the Mann-Whitney U test to compare KL divergence between 
interface and non-interface residues, assessing differences in evolutionary constraint across 
these regions. 

Virus Mutation Rate Classification 
To evaluate the impact of viral mutation rates on interface conservation, viruses were categorized 
based on nucleotide substitution rates per site per year, extracted from peer-reviewed studies 
(Supplementary Table 2). For consistency and interpretability, mutation rates were rounded to 
representative magnitudes, rather than using their precise values. Viruses were grouped into two 
categories: < 1	𝑒*+ and >= 1	𝑒*+ based on the order of magnitude of the mutation rate. This 
classification allowed us to analyze whether rapidly evolving viruses exhibit lower interface 
conservation compared to more stable viruses. 
 

Estimating Extent of Interface Sharing between PPI Pairs 
To quantify interface residue overlaps between interacting protein pairs, we used the Dice Index 
(DI): 

𝐷𝐼 = 2|𝐴 ∩ 𝐵|/(|𝐴| + |𝐵|) 
where |𝐴 ∩ 𝐵| is the number of shared interface residues, and |𝐴| and |𝐵| are the total interface 
residues in each protein. 
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Experimental settings 
Cell lines and cell culture: 293T PRDII-GLuc, 293T MAVSKO (Gokhale et al. 2024), and 293T 
MAVSKO IFNB1-GLuc cells were grown in Dulbecco’s modified Eagle’s medium (DMEM; Thermo 
Fisher) supplemented with 10% fetal bovine serum (HyClone), 25 mM HEPES (Thermo Fisher), 
1X non-essential amino acids (Thermo Fisher), and 1X PSG (Thermo Fisher). Cells were verified 
as mycoplasma free using the LookOut Mycoplasma PCR detection kit (Sigma-Aldrich). 293T 
MAVSKO IFNB1-GLuc were generated by lentiviral transduction of 293T MAVSKO cells as 
described previously (Gokhale et al. 2024). 

Cloning and plasmids: pEFTak Flag-MAVS and Flag-empty vector (EV) were described 
previously (Gokhale et al. 2024). pEFTak HA-TRAF6 was generated by insertion of the TRAF6 
coding sequence amplified from cDNA into NotI- and PmeI-cut pEFTak HA-EV by Infusion cloning 
(Takara). pEFTak UL37-V5 was generated by insertion of UL37-V5 amplified from pCDH UL37-
V5 (Gift of Dr. Pingui Feng) into KpnI- and PmeI-cut pEFTak Flag-EV by Infusion cloning. pEFTak 
UL37-V5 C819S and E1101A were generated by site-directed mutagenesis of pEFTak UL37-V5 
(WT) using the Quikchange Lightning kit (Takara). pEFTak V5-EV was generated by Infusion 
cloning of annealed primers containing V5 and His tag sequences into KpnI- and PmeI-cut 
pEFTak Flag-EV. All primer sequences are found in Supplementary Table 3. 

Co-immunoprecipitation: For immunoprecipitation of Flag-MAVS and HA-TRAF6, 293T 
MAVSKO cells seeded in 10 cm plates (8x106 cells/plate) were transfected with 6 µg each of 
pEFTak HA-TRAF6 and pEFTak Flag-MAVS and 8 µg pEFTak UL37-V5 using TransIT X2 
transfection reagent (Mirus) as per the manufacturer’s protocol. Total amount of DNA in each 
transfection was made up to 20 µg per plate with pEFTak V5-EV. At 24 hpt, cells were lysed in 
500 µL IP lysis buffer (25 mM HEPES pH 7.5, 150 mM NaCl, 3 mM MgCl2, 2 mM EGTA, and 
0.5% Triton X-100) supplemented with protease-phosphatase inhibitor cocktail (Sigma-Aldrich) 
for 15 mins on ice. After clarification of lysates by centrifugation at 8000 xg at 4°C, protein levels 
were quantified by Bradford assay (Bio-Rad). 5% of normalized lysates were kept for input 
samples. 500 µg of each lysate was incubated separately with anti-Flag magnetic beads (Thermo 
Fisher) in a final volume of 400 µL IP lysis buffer for 4 hrs at 4°C with head-over-tail rotation. 
Beads were washed 1X with IP lysis buffer and 3X with cold PBS. Immunoprecipitated proteins 
were eluted by boiling in 2X Laemmli buffer for 5 mins and subjected to immunoblotting. 

For immunoprecipitation of UL37-V5, 293T PRDII-GLuc cells seeded in 6-well plates (1.6x106 
cells/well) were transfected with 2 µg pEFTak UL37-V5 WT or E1101A (or pEFTak V5-EV) using 
TransIT X2. At 24 hpt, cells were lysed in 250 µL IP lysis buffer, and protein levels were quantified 
after clarification. 250 µg protein lysates were incubated with Protein G Dynabeads (Thermo 
Fisher) pre-bound to rabbit anti-V5 antibody (Cell Signaling) for 4 hrs at 4°C with head-over-tail 
rotation. Beads were washed 3X with IP lysis buffer. Immunoprecipitated proteins were eluted by 
boiling in 2X Laemmli buffer for 5 mins and subjected to immunoblotting. 

Gaussia luciferase reporter assays: 293T MAVSKO IFNB1-GLuc or 293T PRDII-GLuc cells 
seeded in24-well plates (4x105 cells/well) were transfected with the indicated plasmids using the 
TransIT X2 reagent and media on cells was changed at 6 hpt. At 36 hpt, 10 µL supernatant from 
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each well was transferred to white opaque 96-well plates in technical duplicate. S/N was mixed 
with Gaussia Glow assay buffer with 1X coelenterazine (Thermo Fisher), and luminescence was 
read on a Biotek Synergy plate reader. After removal of S/Ns for analysis, treated cells were 
subjected to immunoblotting and RT-qPCR analysis. 

Immunoblotting: Whole cell lysates were prepared in a modified RIPA buffer (10 mM Tris pH 
7.4, 150 mM NaCl, 0.5% sodium deoxycholate, and 1% Triton X-100) supplemented with 
protease-phosphatase inhibitor cocktail and clarified by centrifugation at 8000 xg for 10 mins at 
4°C. Protein concentration was determined by Bradford assay and equal amounts of protein 
sample in 1X Laemmli buffer with 2.5% β-ME were prepared by boiling. Samples were resolved 
by SDS-PAGE (Tris-Glycine gels; Bio-Rad) and transferred to methanol-activated PVDF 
membranes (Bio-Rad) by wet transfer. Transferred membranes were incubated with relevant 
primary antibodies in 3% BSA in TBS-T with shaking for 1-2 hrs at room temperature or overnight 
at 4°C. After washing three times with TBS-T, membranes were incubated with species-specific 
horseradish peroxidase-conjugated secondary antibodies (Jackson, 1:5000). 
Chemiluminescence was detected using a Bio-Rad ChemiDoc XRS+ imaging instrument. The 
following primary antibodies were used for immunoblotting: rabbit anti-TRAF6 (CST, 1:1000), 
rabbit anti-IRF3 (CST, 1:1000), rabbit anti-IRF3 phospho-S386 (Abcam, 1:1000), HRP-
conjugated anti-FLAG (Sigma-Aldrich, 1:5000), HRP-conjugated anti-V5 (Proteintech, 1:5000) 
and HRP-conjugated anti-β-actin (CST, 1:5000). Gels were quantified by densitometry using FIJI. 

RT-qPCR: RNA was extracted using TRIzol (Thermo Fisher) and cDNA was generated using the 
PrimeScript RT-PCR kit (Takara). RT-qPCR was performed using a Viaa7 Real Time PCR 
instrument (Applied Biosciences) using TaqMan Universal PCR master mix II - UNG (Thermo 
Fisher). Primer-probe sets (IDT) are described in Supplementary Table 4. 

The 3D Viral-Human Structural Interactome Web Server 
We constructed the 3D Viral-Human Structural Interactome web server, https://3d-
viralhuman.yulab.org/, to provide the AlphaFold predictions as a comprehensive resource to the 
public. All results and raw data described herein are directly available for bulk download 
(https://3d-viralhuman.yulab.org/downloads). Users can quickly search specific interactions or 
interactomes of interest through four types of input modes: 

1. Select a prediction from the list of all interactions or interactions within a specific virus 
family; go to the interaction view. 

2. Extract an interaction, if it exists, by inputting the names/UniProt IDs of both viral and 
human proteins; go to the interaction view. 

3. Retrieve an interactome by inputting the name/ID of a specific protein; go to the 
interactome view. 

4. Retrieve an interactome by inputting a virus taxonomy ID; go to the interactome view. 

The interactome display (Supplement Figure 7 top left and right) provides both graphical and 
tabular views of all involved interactions and their details. Users can interact with the graph/table 
by moving the cursor to specific graph nodes, edges, or table rows to show the entry names of 
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proteins, dragging the nodes to change their positions and organizations, clicking on graph nodes 
to redirect to another interactome view for the protein node clicked, or clicking on graph edges or 
table rows to redirect to the interaction view of the specific interactions.  

The single interaction view (Supplement Figure 7 bottom panel) offers comprehensive details for 
viral and human proteins, including structural visuals (either docked or predicted, switchable using 
a top-center button) and summaries of interface residues. Users can modify the list of interface 
residues by adjusting SASA, dSASA, and pLDDT values via sliding bars. By default, interface 
residues are set with thresholds of SASA ≥ 15, dSASA ≥ 1, and pLDDT ≥ 50, and are displayed 
in dark blue (viral) and dark green (human). 

Furthermore, the interface view displays a linear sequence of both viral and human proteins for 
the query interaction, with interface residues on viral and human proteins marked in dark blue and 
dark green, respectively. It also visualizes the interfaces for other interactors of the protein below 
and provides Jaccard Index scores to indicate their overlaps, facilitating comparison. There are 
also clickable taxonomy IDs for viral proteins directing the viral interactome view, clickable UniProt 
IDs for both proteins directing their single protein interactome views, and clickable entry names 
of other interactors to direct the corresponding single interaction views. 

Figure Legends  
Figure 1. Benchmark of 3D Structure Prediction of Pathogen-Host Protein Interactions. (A)-(C) 
Performance of computational approaches in predicting structures for pathogen-host interactions, 
evaluated by DockQ (A), iRMSD (B), and lRMSD (C). Prediction quality based on DockQ scores 
is categorized as: Incorrect (DockQ < 0.23), Acceptable (0.23 ≤ DockQ < 0.49), Medium (0.49 ≤ 
DockQ < 0.8), and High (DockQ ≥ 0.8). Significance levels of the differences between AlphaFold 
and the best alternative methods are indicated as follows: 'ns' – not significant, '*' – p-value < 
0.05, '**' – p-value < 0.01, '***' – p-value < 0.001. (D)-(E) Performance of computational 
approaches in predicting interface residues for pathogen-host protein interactions in terms of 
macro precision and recall (a single precision and recall are calculated from the whole set of 
predicted interface residues for all interactions). The performance is shown for all interactions as 
well as for viral-human and bacteria-human subsets. (F) Depth of MSAs for inter-species and 
intra-species interactions. The bars display the percentage of interactions with individual and joint 
MSAs, while the violin plots show the distributions of MSA depths. (G) Scatter plots showing 
precision and recall of predicted interface residues for individual interactions. Contour lines 
indicate the density of predictions for both inter-species and intra-species interactions. (H) 
Comparison of structure-level quality measurements, including iRMSD and ligand RMSD lRMSD, 
between inter-species and intra-species interactions.  

Figure 2. Creating Comprehensive 3D Viral-Human Interactomes. (A) We collected a total of 
11,666 binary viral-human interactions and 2,838 viral-viral interactions from three public 
databases: IntAct, BIOGRID, and VirHostNet, as of May 2022. Among these interactions, 1.11% 
(129) of the viral-human protein interactions and 4.58% (130) of the viral-viral protein interactions 
have known 3D structures (full or partial) available in the PDB database. The structures of the 
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known interacting protein pairs without known 3D structures were predicted using AlphaFold. (B) 
A circular plot illustrating the architecture of all viruses included in this study. The viruses are 
classified in multiple tracks based on multiple categories (from inner to outer): nucleus vs. 
cytoplasm (the first track), DNA vs. RNA (the second track), segmented vs. nonsegmented (the 
third track), and single-strand vs. double-strand (the fourth track, ss: single-strand, ds: double-
strand, (p)ds: partial double-strand, (-): negative sense, (+): positive sense, (+/-): ambisense, 2X: 
two copies). The outermost track indicates the common name and the number of interactions 
(represented by bars) for each virus, grouped and colored according to their family names (outer 
labels), which are further labeled based on whether they are enveloped or non-enveloped. (C) 
The known viral-human protein interactome for HIV-1 group M subtype B (isolate PCV12). (D) 
The known viral-human protein interactome for EBV strain GD1. In both (C) and (D), viral proteins 
are shown in red and human proteins in cyan. Circles represent single viral proteins, while 
rectangles represent viral-human protein complexes. 

Figure 3. Validation of the 3D Structures of Viral-Human Protein Interactomes Predicted by 
AlphaFold. (A)-(B) Predicted structures of the interactions between RAE1L and NS6 (SARS2) (A) 
and PEBB and VIF (HV1H2) (B). The depths of MSAs for individual proteins and joint MSAs are 
included. Novel structure fragments predicted by AlphaFold are colored pink for human protein 
regions and red for viral protein regions. (C)-(D) Structures predicted by AlphaFold for the 
interactions of B2L11 with 16L (YLDV) (C) and EFNB2 with G (9MONO) (D). The depths of MSAs 
for individual proteins and joint MSAs are included. Novel structure fragments predicted by 
AlphaFold are colored pink for human protein regions and red for viral protein regions.  
(E) Predicted structure of the interaction between UB2D1/UB2E1 and ICP0 (HSV1), which has 
been experimentally validated. Bar plots at the top show the rates of predicted interface residues 
that were experimentally validated to affect different phenotypes. Zoomed in panels at the bottom 
indicates the predicted interface residues validated by Y2H and other experiments. (F) Predicted 
structure of the interaction between B2L11  and EAR (EBVB9) with the experimentally validated 
interface residue (G99) emphasized. (G) Predicted structure of the interaction between DERL1 
and US11 (HCMVM) with experimentally validated interface residue (Q192) emphasized. 

Figure 4. Interface Residues on Viral and Human Proteins have Differing Patterns of Selective 
Pressure and Conservation Compared to Non-interface Residues. (A) Schematic showing how 
the difference in proportion of high FST variants coding for interface and non-interface residues on 
human proteins was estimated. (B) Residues at interfaces of human-viral protein interactions 
were found to be under significantly higher selective pressure compared to not-interface residues. 
(C) Schematic showing how the difference in proportion of high FST variants coding for surface 
and buried residues on human proteins was estimated. (D) Residues at the surface of human 
proteins interacting with viral proteins did not have significant differences in selective pressure 
compared to buried residues. (E) Schematic showing how the difference in proportion of high FST 
variants coding for hydrophobic and hydrophilic residues on human proteins was estimated. (F) 
Hydrophilic residues on human proteins interacting with viral proteins did not have significant 
differences in selective pressure compared to hydrophobic residues. (G) Conservation for protein 
residues was estimated using KL Divergence. (H) Interface residues for human-human protein 
interactions were significantly more conserved than non-interface residues. (I) Different patterns 
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of conservation were different for viral interface residues. * represent p-value < 0.05 for a Mann-
Whitney U Test.    

Figure 5. Studying the Extent of Interface Sharedness between Interactions involving Viral and 
Human Proteins. (A) Extent of interface sharedness was estimated for viral-human and human-
human protein interactions (interface mimicry) and for different viral-human protein interactions 
using Dice index. Comparisons of viruses with high and low mutation rates ( >=1e-04 and <1e-04 
substitution/site/year, respectively) for (B) extent of overlap between human and viral proteins 
and (C) viral proteins binding to the same human protein are shown. Comparisons of HPV and 
HIV1 for (D) extent of overlap between human and viral proteins and (E) viral proteins binding to 
the same human protein are shown. (F) Schematic outlining the pattern of interface sharing for 
viruses with high and low rates of mutation. *** represent p-value < 0.05 for a Mann-Whitney U 
Test, adjusted for multiple comparisons where needed.  

Figure 6. Segregation of High-Risk and Low-Risk HPVs Based on the Binding Sites of Human 
Proteins for Viral Protein E6. (A) Comparison of extent of interface sharing, measured by Dice 
index, by E6 proteins from high-risk and low-risk HPVs. (B) Adjusted NMI scores of functionally 
important human proteins that have intensive interactions with the E6 protein of HPVs. The 
functions of proteins are labelled with background colors. The adjusted NMI score measures how 
likely the binding sites of human proteins for E6 are consistent with the oncogenic levels (high-
risk or low-risk) of HPVs. (C) Predicted structures of interactions between IMA1 and E6 of different 
HPVs with known oncogenic annotations are superimposed, showing groups of binding sites. 
HPV6 (6A and 6B) and HPV11, considered low-risk as they do not cause cervical cancer, are 
colored blue as they may cause other types of cancer. The right-bottom panel shows the 
distribution of prediction scores among different HPV groups. (D) Heatmap with hierarchical 
clustering plot (left panel) based on the Jaccard index of binding sites on IMA1 (right panel). The 
axis labels of the heatmap are the type numbers of HPVs, with their oncogenic levels indicated in 
red bars (high-risk) and green bars (low-risk) above the axis labels. The right panel shows the 
locations of binding sites of different E6 proteins on IMA1 sequences, where three key domains 
are annotated: IBB (importin beta binding domain, position: 2-66), NLS binding site (major, 
position: 142-238), and NLS binding site (minor, position: 315-403). (E) Extended heatmap with 
hierarchical clustering plot based on the Jaccard index of binding sites of all HPVs with known E6 
sequences on IMA1. The oncogenic levels of the clusters are annotated with colored dashed 
rectangles across the heatmap and domain view of IMA1 (red for high-risk and green for low-risk). 

Figure 7. HSV-1 UL37 competes with MAVS for TRAF6 binding to inhibit IFN activation. (A) 
Schematic of RIG-I-like receptor and Herpes simplex virus-1 UL37 signaling. (B) Model 
demonstrating shared interface residues on TRAF6 for UL37 (predicted by Alphafold) and MAVS 
(PDB: 4Z8M) binding. (C) Schematic of experiments investigating UL37 suppression of MAVS 
signaling. 293T MAVSKO IFNB1-GLuc reporter cells induce Gaussia luciferase (GLuc) driven by 
tandem IFNB1 promoter elements after MAVS overexpression. (D) (Top) Relative GLuc in the 
supernatant (S/N) from 293T MAVSKO IFNB1-GLuc cells following overexpression of Flag-MAVS 
and increasing doses of UL37-V5 at 36 hours post-transfection (hpt). (Bottom) Immunoblot 
analysis of lysates from cells treated in the indicated manner. (E) (Top) Relative GLuc in the S/N 
from 293T MAVSKO IFNB1-GLuc cells following overexpression of Flag-MAVS and UL37-V5 WT 
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or C819S deamidation mutant at 36 hpt. (Bottom) Immunoblot analysis of lysates from cells 
treated in the indicated manner. (F) Immunoblot analysis of anti-Flag and anti-HA 
immunoprecipitated extracts as well as input lysates from 293T MAVSKO cells transfected with 
HA-TRAF6, Flag-MAVS, and UL37-V5 as indicated (24 hpt). Quantification of HA-TRAF6 relative 
to immunoprecipitated Flag-MAVS and Flag-MAVS relative to immunoprecipitated HA-TRAF6 are 
shown below as indicated.  (G) (Top) Immunoblot analysis of anti-V5 immunoprecipitated extracts 
and input lysates from 293T PRDII-GLuc (NF-κB reporter) cells expressing UL37-V5 WT or 
E1101A TRAF6-binding mutant (24 hpt). (Bottom) Relative GLuc in S/N from 293T PRDII-GLuc 
cells expressing UL37-V5 WT or E1101A. (H) Immunoblot analysis of 293T MAVSKO IFNB1-
GLuc cells following expression of Flag-MAVS as well as UL37-V5 WT and E1101A at 36 hpt.  (I) 
Quantification of phosphorylated IRF3 (S386) relative to total IRF3 from experiments in (H).  (J) 
Relative GLuc in the S/N from 293T MAVSKO IFNB1-GLuc cells following overexpression of Flag-
MAVS and UL37-V5 WT and E1101A (36 hpt). (K) RT-qPCR analysis of IFNB1 (target of IRF3 
and NF-κB), IFIT1 (target of IRF3 and ISGF3 after activation by interferons), and IL8 (target of 
NF-κB) mRNA expression relative to HPRT1 from 293T MAVSKO IFNB1-GLuc cells following 
overexpression of Flag-MAVS and UL37-V5 WT and E1101A (36 hpt). 

Supplemental Information  
 
Supplementary Figure 1. (A) Comparison of multiple sequence alignments (MSAs) for viral-
human and bacteria-human interactions. The bars display the percentage of interactions with 
individual and joint MSAs, while the violin plots show the distributions of MSA depths. (B) Scatter 
plots showing precision and recall of predicted interface residues for individual interactions that 
were not used in the training of AlphaFold. Contour lines indicate the density of predictions for 
both inter-species and intra-species interactions. (C) Comparison of structure-level quality 
measurements, including interface RMSD (iRMSD) and ligand RMSD (lRMSD), between 
interspecies and intraspecies interactions that were not used in the training of AlphaFold. (D) The 
comparison between AlphaFold-Multimer (AFM) and AlphaFold3 (AF3) in terms of precision (y-
axis), recall (x-axis), and F1-score (contour lines) for the predicted interfaces. Smaller dots 
represent the performance on individual viral-human interactions, while larger dots indicate the 
overall performance, calculated by integrating the interfaces of all interactions and computing the 
corresponding precision and recall values. 

Supplementary Figure 2. Scatter plot showing the precision and recall of predictions for the 
interactions with known PDB structures released after the training timestamp (April 2018) of 
AlphaFold. 

Supplementary Figure 3. Difference in proportion of high FST for variants stratified by polarity of 
residue encoded. No significant differences were observed for any of the viruses.  
Supplementary Figure 4. Distribution of AlphaFold score for interactions used in analysis of extent 
of sharedness between (A) viral and human and (B) viral proteins interacting with the same human 
proteins. 
Supplementary Figure 5. Comparison of extent of interface sharing, measured by Dice index, by 
viral proteins from high-risk and low-risk HPVs. 
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Supplementary Figure 6. Predicted structures of the interactions between IMA1 and E6 proteins 
from different HPV types, categorized by their known oncogenic annotations, are grouped and 
presented separately. The binding domains of IMA1 involved in each interaction are highlighted 
in corresponding colors to indicate the specific regions engaged in binding. 

Supplementary Figure 7. Overview of the 3D-ViralHuman Structural Interactome Browser. This 
figure illustrates the result pages for single interactions or interactomes in our 3D-ViralHuman 
structural interactome browser. The browser allows users to search for single interactions by 
selecting from an existing list of interactions within a specific virus family or by inputting protein 
names/IDs. Additionally, interactomes can be searched using a single protein or a virus taxonomy 
ID. The interactome display (top panels) provides both graphical and tabular views of all involved 
interactions and their details. Users can click on graph nodes, edges, or table rows to display 
specific interaction information. The single interaction display (bottom panel) includes detailed 
information for both viral and human proteins, showing structural displays (either docked or 
predicted, switchable with the button at the top middle) and summarizing interface residues for 
both proteins. The list of interface residues can be adjusted based on SASA value, dSASA value, 
and pLDDT value settings using sliding bars. By default, interface residues are defined with 
settings of SASA ≥ 15, dSASA ≥ 1, and pLDDT ≥ 50, and are colored dark blue (viral) and dark 
green (human). The interface view also presents a linear representation of the protein sequence, 
with interface residues on viral and human proteins annotated in dark blue and dark green, 
respectively. Interfaces for other interactors of the protein are displayed below for easy 
comparison, with the Jaccard Index indicating the overlap between interface residues of the 
current and other interactors. Additional features include clickable taxonomy IDs of viral proteins 
for the viral interactome view, UniProt IDs of both proteins for their single protein interactome 
views, and entry names of other interactors for the corresponding interaction views. 

Supplementary Table 1. The oncogenic levels of all HPVs shown in the heatmap of Figure 6E 

Supplementary Table 2. Mutation rates of viral families retrieved from literature 

Supplementary Table 3. Primer sequences  

Supplementary Table 3. Primer probe sets   

Resource Availability 

Lead contact 
Further information and requests for resources should be directed to the lead contact, Haiyuan 
Yu (haiyuan.yu@cornell.edu). 
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Data and code availability 
Data that support the findings of this study are available in the article, supplementary tables, and 
GitHub repository (https://github.com/haiyuan-yu-lab/3D-Viral-Human and 
https://github.com/jishnu-lab/ViralHuman3D). Viral-protein structures predicted by AlphaFold are 
accessible via the web server (https://3d-viralhuman.yulab.org/). 
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