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Abstract

Massively parallel reporter assays (MPRAS) and self-transcribing active regulatory region
sequencing (STARR-seq) have revolutionized enhancer characterization by enabling high-
throughput functional assessment of regulatory sequences. Here, we systematically evaluated six
MPRA and STARR-seq datasets generated in the human K562 cell line and found substantial
inconsistencies in enhancer calls from different labs that are primarily due to technical variations
in data processing and experimental workflows. To address these variations, we implemented a
uniform enhancer call pipeline, which significantly improved cross-assay agreement. While
increasing sequence overlap thresholds enhanced concordance in STARR-seq assays, Cross-assay
consistency in LentiMPRA was strongly influenced by assay-specific factors. Notably, our
results show that LentiMPRA exhibits a strong preference for promoter-associated sequences
rather than enhancers. Functional validation using candidate cis-regulatory elements (cCCRES)
confirmed that epigenomic features such as chromatin accessibility and histone modifications are
strong predictors of enhancer activity. Importantly, our study validated transcription as a critical
hallmark of active enhancers, demonstrating that highly transcribed regions exhibit significantly
higher active rates across assays. Furthermore, we show that transcription enhances the
predictive power of epigenomic features, enabling more accurate and refined enhancer
annotation. Our study provides a comprehensive framework for integrating different enhancer
datasets and underscores the importance of accounting for assay-specific biases when
interpreting enhancer activity. These findings refine enhancer identification using massively
parallel reporter assays and improve the functional annotation of the human genome.
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Introduction

Enhancers are key cis-regulatory DNA elements that drive transcriptional activity and play a
pivotal role in gene regulation. Their influence extends beyond individual gene expression,
shaping broader regulatory networks that control cell identity and function. Variants within
enhancers have been strongly implicated in complex traits and diseases, emphasizing the
importance of systematically identifying and characterizing enhancers to elucidate their
contributions to gene expression and disease mechanisms? 2,

Traditional reporter gene assays have long been used to characterize enhancer activity by
positioning candidate sequences upstream or downstream of a minimal promoter linked to a
reporter gene*8. However, enhancers present a much greater challenge for functional
characterization than the ~25,000 protein-coding genes in the human genome due to their vast
numbers, sequence variability, and highly context-dependent activity”® While these traditional
reporter gene assays remain functional, the advent of high-throughput sequencing technologies
has revolutionized enhancer studies, enabling massively parallel reporter assays (MPRAS) and
self-transcribing active regulatory region sequencing (STARR-seq) to profile the regulatory
activity of millions of sequences simultaneously®*!. These innovations have dramatically
expanded our ability to interrogate enhancers on a genome-wide scale, addressing the limitations
of conventional low-throughput approaches.

MPRAs, which utilize synthesized oligonucleotide libraries, position candidate sequences
upstream of a minimal promoter and tag them with unique barcodes in the 3’ or 5’ UTR of the
reporter gene. Regulatory activity is inferred by sequencing RNA transcripts associated with
these barcodes®°. Despite their robustness, MPRAS face challenges in testing long DNA
sequences and complex libraries due to synthesis and cost limitations®2, Additionally, placing
candidate sequences upstream of a promoter may inadvertently capture promoter rather than
enhancer activity, confounding the interpretation of regulatory function®3.

STARR-seq overcomes some of these constraints by placing candidate sequences within the 3’
UTR of a reporter gene, allowing them to self-transcribe and directly quantify enhancer activity
based on transcript abundance!. Unlike MPRAs, STARR-seq does not rely on synthesis but
instead uses fragmented genomic DNA, typically obtained through sonication®® or nuclease
digestion'®, enabling genome-wide enhancer screening without sequence-length restrictions®’.
However, STARR-seq also has inherent challenges. The placement of candidate sequences in the
3’UTR can affect mMRNA stability, and thereby introduce orientation biases in enhancer
quantification'®. Furthermore, genome-wide STARR-seq requires highly complex libraries,
necessitating deep sequencing and high transfection efficiency to achieve sufficient coverage®
20, Since random fragmentation rarely generates multiple identical copies of the same fragment,
most fragments produce only a single readout. As a result, fragment-level analysis is not feasible,
requiring the use of peak-calling algorithm to identify enhancer regions®2, However, these
approaches lack the resolution to precisely delineate enhancer boundaries.

In recent years, several MPRA and STARR-seq variants have been developed to facilitate the
genome-wide functional characterization of human enhancers and their sequence variants!#1521-
25, Among these efforts, the ENCODE Consortium has played a pivotal role by implementing
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78 large-scale, high-throughput reporter assays within and across multiple cell lines to

79  systematically map enhancer activity across the genome?6-28. These efforts have generated

80  extensive datasets that provide a valuable resource for dissecting the regulatory architecture of
81  the genome.

82  However, several critical questions must be addressed to fully leverage these resources and

83  refine the application of massively parallel reporter assays for deeper functional dissection of
84  enhancer sequences. One key uncertainty is the extent to which the human genome has been

85  functionally characterized. While STARR-seq has the theoretical capacity to screen enhancers
86  genome-wide, practical limitations such as sequencing depth can significantly impact

87  coverage. Additionally, the consistency of enhancer identification across different experimental
88  platforms remains unclear. A recent study systematically compared nine different MPRA and
89 STARR-seq assay designs using a fixed set of 2,440 sequences, demonstrating how variations in
90 experimental design influence enhancer activity measurements?.While this study provided

91 valuable insights, it was conducted under controlled conditions rather than real-world

92  applications, where assay-specific factors—such as library design, sequencing depth, and data-
93  processing pipelines—may introduce systematic biases. Furthermore, the extent to which

94  reporter assays yield consistent regulatory activity profiles and how functionally characterized
95  enhancers align with annotations derived from epigenomic features—such as histone

96  modifications, chromatin accessibility, and transcriptional activity—remain largely unexplored.

97  To fully integrate these existing large-scale reporter assay datasets for enhancer sequence and

98 functional studies and optimize the future application of massively parallel reporter assays, a

99  systematic evaluation of their genome-wide coverage, cross-assay consistency, and concordance
100  with existing enhancer annotations is needed. Without such an assessment, leveraging these
101  datasets for meaningful biological insights remains challenging, limiting our ability to accurately
102  interpret regulatory landscapes and develop a unified framework for enhancer characterization.

103  In this study, we systematically evaluated a total of six STARR-seq and MPRA datasets

104  representing four major MPRA and STARR-seq assay types obtained in the human K562 cell
105 line. Initial comparisons of lab-reported enhancer calls revealed limited overlap, prompting a
106  deeper investigation into the factors contributing to cross-assay inconsistencies. We reprocessed
107  all datasets using a unified analytical framework, assessing dataset quality while implementing a
108 standardized enhancer identification pipeline and improving cross-assay comparisons by

109 recording both active and inactive regions. Using this harmonized approach, we found

110  significantly improved enhancer call consistency across assays, especially in cases testing similar
111  sequence composition. Furthermore, we assessed the functional relevance of enhancer candidates
112  defined by enhancer RNA (eRNA) transcription start sites (TSSs) and defined by epigenomic
113  profiles from the ENCODE registry of candidate cis-regulatory elements (cCREsS), finding

114  existing enhancer annotations are concordant with massively parallel reporter assay data. We
115  also demonstrated transcription emerged as a critical mark of enhancer function, improving the
116  predictive power of epigenomic features and enhancing the enhancer annotation. Our study

117  provides the first comprehensive assessment of diverse massively parallel reporter assay datasets,
118  offering a framework for integrating these datasets to enhance biological insights and refine

119  functional characterization strategies for future applications.
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120  Results
121 Assessment of Cross-Assay Consistency in Enhancer Identification

122 We analyzed six distinct STARR-seq and MPRA datasets produced by laboratories within the
123 ENCODE Consortium’s Functional Characterization Center, comprising three TilingMPRA

124  datasets, a LentiMPRA dataset, an ATAC-STARR-seq, and a WHG-STARR-seq dataset?®-28,
125  Although all assays were performed in the human K562 cell line, they differed in experimental
126  objectives, design strategies, and data processing methods. An overview of these experimental
127  designs is illustrated in Fig. 1a, with detailed dataset descriptions provided in the Supplementary
128  Notes.

129  To evaluate the consistency of enhancer identification, we compared enhancer calls reported in
130 each dataset. Data were retrieved from either the ENCODE portal?®-28 or original publications
131  and processed according to each laboratory’s guidelines. The original number of lab-reported
132  enhancer regions is summarized in Supplementary Table 1. To standardize comparisons,

133  overlapping enhancer calls within each dataset were merged into unique regions, resulting in
134 12,919 enhancer regions across three TilingMPRA datasets, 56,840 regions from LentiMPRA,
135 46,906 and 38,671 regions from ATAC-STARR-seq and WHG-STARR-seq, respectively.

136  We compared enhancer calls across assays by measuring the number of overlapping enhancer
137  regions in each pairwise comparison, applying a minimal overlap threshold of 1 base pair (bp) to
138  ensure inclusion of partially overlapping regions (Extended Data Fig. 1b).The highest overlap
139  was observed between LentiMPRA and ATAC-STARR-seq, where approximately 40% (22,780
140  out of 56,840) of LentiMPRA regions overlapped with 44% (20,692 out of 46,906) of ATAC-
141  STARR-seq regions. ATAC-STARR-seq and WHG-STARR-seq showed the second-highest
142 overlap, with around 11% (5,359 out of 46,906) of ATAC-STARR-seq regions overlapping with
143 16% (6,255 out of 38,671) of WHG-STARR-seq regions. Comparisons involving LentiMPRA
144  and WHG-STARR-seq, as well as TilingMPRA with other assays, exhibited lower overlap,

145  reflecting differences in enhancer calls across these datasets (Fig. 1b).

146  To further quantify similarity across assays, we calculated the Jaccard Index (JI) for each

147  pairwise comparison. Overall, enhancer identification exhibited low consistency, with most JI
148  values approaching zero (Fig. 1c). The highest JI was observed between LentiMPRA and

149 ATAC-STARR-seq (0.28), followed by ATAC-STARR-seq and WHG-STARR-seq (0.08).
150  Applying stricter overlap criteria further reduced similarities (Extended Data Fig. 2a,b) ,

151  highlighting the substantial variability in enhancer identification across different assays.

152 Investigating Factors Contributing to Cross-Assay Inconsistencies

153  The discrepancies in enhancer activity measurements observed across STARR-seq and MPRA
154  assays likely stem from a combination of technical and biological factors. Technical factors

155 include variations in experimental protocols and data analysis methodologies, whereas biological
156  factors encompass aspects such as chromatin context, enhancer-promoter compatibility,

157  sequence positioning, and the inherent properties of the tested sequences.
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158  Chromatin context can affect enhancer activity measurements as episomal assays may not

159  replicate the native chromatin environment, leading to differences in enhancer activities

160 compared to integrated reporter assays, where sequences are chromatinized?®. Minimal promoter
161  choice in the reporter construct is another source of variability, as different minimal promoters
162  exhibit varying levels of basal transcription?. Moreover, certain enhancers respond preferentially
163  to specific promoters, adding further complexity to cross-assay consistency3°-34,

164  The positioning of candidate sequences also influences reporter assay outcomes, particularly
165  when characterizing enhancer functions. In many MPRAs, candidate enhancer sequences are
166  placed upstream of a minimal promoter, which may inadvertently measure promoter activity
167 instead of enhancer activity, if the sequence contains promoter-like features®3. The specific
168  sequences tested also play a substantial role in determining assay outcomes, as each sequence
169  may exhibit distinct regulatory properties and context-dependent behavior. For instance,

170  appending flanking regions to a tested sequence can alter enhancer activity, leading to

171  differences in activity measurements?°.

172 Despite the potential impact of these biological factors, a recent study demonstrated that good
173 correlations in enhancer activities can be achieved across different experimental designs in

174  reporter assays—including those used in our study—when a common set of sequences is tested
175  under standardized protocols and analyzed with a unified data processing pipeline?. This finding
176  suggests that while biological factors do contribute to variability, they are unlikely to be the

177  primary drivers of the observed inconsistencies. Instead, technical factors, particularly variations
178 in data analysis pipelines, are likely more significant contributors.

179 A primary factor contributing to the observed cross-assay inconsistencies is the lack of

180 comprehensive reporting of all tested regions. While targeted assays like TilingMPRA and

181  LentiMPRA typically provide quantification data for all tested elements, including both active
182  and inactive elements, genome-wide STARR-seq datasets—such as ATAC-STARR-seq and
183  WHG-STARR-seg—commonly report only the final set of active peak regions. This limited

184  reporting omits regions that were tested but did not reach statistical significance. Without

185  comprehensive information on all regions that proceed through statistical testing, it becomes
186  difficult to determine the true extent of the genome that was functionally evaluated.

187  Consequently, this limits accurate assessments of genome-wide assay coverage and complicates
188  rigorous cross-assay comparisons. While many current genome-wide STARR-seq analyses

189  assess coverage based on all assayed fragments (Fig. 1d), true assay coverage should reflect only
190 those regions that passed quality filters and underwent statistical testing for enhancer activity,
191  excluding low-coverage regions (Fig. 1d). Additionally, meaningful pairwise comparisons

192  Dbetween assays require focusing on regions that were commonly tested across both assays. By
193  reporting only active regions, current comparisons may overestimate inconsistencies, as not all
194  active regions in one assay were necessarily tested in the other. Comprehensive reporting of all
195  tested regions would provide a clearer view of assay coverage and may help reduce the observed
196 inconsistencies, enabling more accurate cross-assay comparisons.

197  Another important factor contributing to cross-assay inconsistencies is the resolution of enhancer
198 identification, which varies widely between assays and significantly impacts comparisons. High-
199  resolution assays like TilingMPRA and LentiMPRA use fragment-level analysis to define
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200  precise enhancer boundaries, while genome-wide STARR-seq typically relies on sliding window
201  peak-calling, generally offering lower resolution. In genome-wide STARR-seq, resolution is
202  heavily influenced by genomic bin size and step size, as these parameters determine the size of
203  the final peak regions. Additionally, methods for calculating read depth in each genomic bin

204  further affect the results. For instance, STARRPeaker'?, a peak-calling algorithm optimized for
205 genome-wide STARR-seq, has demonstrated that using fragment read depth enables more

206  precise identification of peak summits or centers, aligning with findings that sequence context
207  impacts reporter assay outcomes. Thus, incorporating original fragment boundaries in read depth
208 calculations is essential for consistent and accurate enhancer identification. While some

209  differences in resolution across reporter assays are inevitable, standardizing genomic bin size and
210  step size, and counting only fragments that fully cover each bin into its read depth in genome-
211  wide STARR-seq, should improve cross-assay consistency assessments.

212 Another factor contributing to cross-assay inconsistencies is orientation bias in enhancer activity
213 measurements, particularly in STARR-seq assays'®. Although enhancers are generally

214  considered orientation-independent*, some assays do not adequately account for orientation in
215  experimental design or data analysis, potentially contributing to observed inconsistencies. For
216  example, TilingMPRA assays tested sequences in only one orientation. In ATAC-STARR-seq
217  and WHG-STARR-seq, although DNA fragments were derived from both orientations, the

218  original analysis pipelines did not separately calculate read depth for genomic bins by

219  orientation. This lack of distinction may have allowed signals from non-overlapping sequences
220  to confound the results, potentially leading to the misclassification of orientation-specific

221  elements as enhancers. Likewise, in LentiMPRA, sequences were tested in both orientations but
222  were classified as enhancers if they were active in either orientation. Without considering

223  activity in both orientations as part of the enhancer-calling criteria, assays may misclassify

224 enhancer regions, complicating cross-assay comparisons. To address this issue, it is essential to
225  test sequences in both orientations and require consistent activity in both orientations as a

226  criterion for enhancer identification. This strategy would improve the accuracy and reliability of
227  enhancer identification and minimize orientation-related biases.

228  Variations in in-house data processing pipelines may also contribute to the observed

229  inconsistencies across assays. Each pipeline may use distinct probability distributions, bias

230  correction methods, and statistical tests, all of which can affect the results. Additionally,

231  pipelines often apply arbitrary logz fold change thresholds to define active regions, but these

232  thresholds can vary significantly. Given the differences in minimal promoters across assays,

233  normalizing enhancer activity relative to each promoter’s basal transcription level is essential for
234 consistent enhancer identification. Studies suggest that evaluating enhancer activity relative to
235  promoter-specific basal transcription yields more comparable results®>3¢. To improve cross-assay
236  evaluations, implementing a unified approach to process and assess enhancer activity of all

237  datasets is necessary.

238  Unified Processing of Reporter Assay Datasets: Initial Data Quality Check

239  To begin our unified processing of all datasets, we first conducted a comprehensive quality
240  assessment of the reporter assay datasets. In addition to the biological and technical factors
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241  discussed previously, the initial quality of these datasets directly impacts assay consistency and
242 reliability.

243  For TilingMPRA, LentiMPRA, count data were readily available through the ENCODE portal?®-
244 28 or were re-processed with guidance from the original authors®. For ATAC-STARR-seq and
245 WHG-STARR-seq datasets, we applied a unified genomic binning approach, creating 100-bp
246 genomic bins with a 10-bp step size in both forward and reverse orientations (Extended Data Fig.
247  3a). Only fragments that fully covered each genomic bin were counted, allowing for orientation-
248  independent enhancer identification and a more accurate assessment of genome-wide coverage
249  of tested regions.

250  We assessed genome-wide coverage for ATAC-STARR-seq and WHG-STARR-seq datasets.
251  Our analysis revealed extensive library complexities of these two datasets, with over 96% of the
252  human genome assayed after processing using the genomic binning approach. However, detailed
253  evaluation identified a notable subset of genomic bins with low read depths in DNA libraries
254  (<10; Methods) (Fig. 2a). This finding raises critical concerns about data quality, likely reflecting
255 limitations in sequencing depth and transfection efficiency. Such limitations suggest that the
256  reported genome-wide coverage of these assays may significantly overstate the regions

257  effectively analyzed, as low-read-depth regions are typically excluded from downstream

258  analyses, thereby reducing the tested coverage of these datasets. Additionally, we evaluated the
259  coverage of accessible regions in both ATAC-STARR-seq and LentiMPRA datasets, given that
260 their assayed fragments were either designed to be enriched in or selected from these regions.
261  Both datasets demonstrated the ability to capture a substantial proportion of accessible regions
262  with high read depths (Fig. 2b). Specifically, ATAC-STARR-seq achieved almost 100% of

263  coverage of accessible regions characterized by ATAC-seq peaks, while LentiMPRA

264  successfully covered 44% of DNase hypersensitive sites (DHSs) at higher read-depth threshold
265  (>10) in DNA libraries.

266  To assess reproducibility between replicates, we calculated Pearson correlations (p) for log-

267  transformed counts per million (logCPM) of DNA and RNA counts, as well as log2(RNA/DNA)
268  ratios, as these ratios represent the primary measurement of enhancer activity in downstream

269  analyses. Overall, TilingMPRA and LentiMPRA demonstrated strong replicate correlations,

270 indicating high reproducibility across libraries (Fig. 2c). Specifically, LentiMPRA showed robust
271  correlations for both logCPM of DNA and RNA counts (0.97<p<0.99) and log2(RNA/DNA)

272  ratios (0.72<p<0.80). Among the TilingMPRA datasets, ENCSR917SFD and ENCSR363XER
273  displayed consistently high correlations (0.96<p<0.99 for logCPM, 0.87<p<0.90 for

274 1og2(RNA/DNA)), while ENCSR394HXI had moderately lower values (0.62<p<0.89 for

275  1logCPM, 0.47<p<0.58 for log2(RNA/DNA)), suggesting some variability within this dataset.

276  In contrast, ATAC-STARR-seq and WHG-STARR-seq demonstrated considerably lower

277  fragment-level reproducibility (Fig. 2c). ATAC-STARR-seq showed weak agreement between
278  replicates (0.001<p<0.26 for logCPM, 0.12<p<0.22 for log2(RNA/DNA)), while WHG-STARR-
279  seq exhibited even greater variability, including negative RNA correlations (Fig. 2c).

280  Aggregating fragments into genomic bins markedly improved replicate reproducibility for DNA
281  and RNA counts and log2(RNA/DNA) ratios in the ATAC-STARR-seq dataset and RNA counts
282  in WHG-STARR-seq dataset (Fig. 2c). Despite these improvements, the correlations for
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283  log2(RNA/DNA) ratios remained low in both datasets (0.18<p<0.37 for ATAC-STARR-seq,
284  0.42<p<0.47 for WHG-STARR-seq. Further restricting analysis to accessible genomic bins in
285 ATAC-STARR-seq provided marginal improvements but did not reach the high reproducibility
286  observed in MPRA datasets, highlighting persistent variability in genome-wide STARR-seq
287  measurements.

288  We also evaluated library recovery rates by calculating the proportion of fragments or genomic
289  bins with at least one read in each library. TilingMPRA and LentiMPRA had high recovery rates
290  (89%-100%), whereas ATAC-STARR-seq exhibited an average library recovery rate below 40%
291 in DNA libraries and even lower in RNA libraries (Fig. 2d). These findings suggest that many
292  fragments were not consistently detected in ATAC-STARR-seq, possibly due to low sequencing
293  depth or low transfection efficiency. Further analysis of fragments overlapping ATAC-seq peaks
294  showed similar discrepancies in recovery rates between DNA and RNA libraries, pointing to
295 limitations in data quality (Fig. 2d). WHG-STARR-seq also had low recovery rates at the

296  fragment level (18%-38%), but most genomic bins were represented in both DNA and RNA

297  libraries (93%-98%) (Fig. 2d), indicating that issues with sequencing depth and transfection

298  efficiency were not as severe.

299  These results revealed substantial variability in data quality across different datasets. While

300 MPRA assays exhibited consistently high data quality and reproducibility, genome-wide

301 STARR-seq datasets were more susceptible to limitations such as insufficient sequencing depth
302 and potential low transfection efficiency. These factors likely contributed to higher variability
303 and reduced reliability in enhancer identification, and this issue can remain significant even

304  when genomic binning is applied. Our findings highlight the necessity of applying stringent

305 filtering criteria to exclude low-read-depth regions in the downstream analysis while also

306  ensuring that the final reported tested regions accurately represent sequences with sufficient read
307  depth, rather than using all assayed regions as a proxy for measuring tested region coverage.

308  Uniform Processing of Reporter Assay Datasets: Enhancer Call Pipeline

309  While future studies should further address experimental challenges, to address the role of data
310  processing in contributing to the observed inconsistencies, we implemented a unified enhancer
311  call pipeline and applied it consistently across all datasets. The workflow is illustrated in Fig. 3a,
312  with detailed methodology provided in the Methods section.

313  The pipeline begins with a raw count matrix as input and applies dataset-specific filters to

314  remove fragments or genomic bins with low read depth. We then adapted the Trimmed Mean of
315  M-values (TMM) normalization®” and linear model approach from the Limma-Voom pipeline3®
316  to calculate log2(RNA/DNA) as a measure of regulatory activity for each fragment or genomic
317  binin each orientation. For targeted assays that included negative control sequences, we

318  modified the original TMM normalization method to rely solely on negative controls for

319 adjusting library size and composition bias. This approach provides greater accuracy in

320 normalization, particularly for targeted assays where the assumption that most fragments lack
321  regulatory effects may not hold.

322  After computing the log2(RNA/DNA) values, we assessed the regulatory activity of each
323  fragment or genomic bin in both orientations by comparing it to the activity levels of negative
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324 controls through a Z-score analysis rather than relying on an arbitrary log2(RNA/DNA) cutoff.
325  This comparison allowed for the identification of regions with significantly elevated activity
326  relative to the basal transcription level defined by the negative controls in each orientation. To
327  mitigate orientation bias, we incorporated regulatory activity in both orientations as a criterion
328  for determining whether a fragment or genomic bin qualifies as a potential enhancer.

329  For genome-wide STARR-seq datasets that lacked negative controls in the original assays, we
330 used genomic bins within exonic regions as surrogate negative controls, as enhancers are

331  predominantly located in non-coding regions?6:3%4%, To ensure a clear distinction between

332  potential enhancer regions and those likely to exhibit basal transcription, we excluded genomic
333  bins overlapping the 300-bp flanking regions on either side of exons. This approach minimizes
334  the risk of using genomic bins that may have counted fragments overlapping with enhancers in
335 intronic regions, increasing the reliability of these surrogate negative controls.

336  Finally, our pipeline recorded both active and inactive regions identified in an orientation-

337 independent manner, ensuring an accurate assessment of genome-wide coverage of tested

338  regions. This comprehensive reporting approach also enables robust cross-assay comparisons.
339  Detailed numbers of fragments or genomic bins tested in one or both orientations, the numbers of
340  negative controls, and the numbers of enhancer regions identified are provided in the

341  Supplementary Table 2.

342  Improved Enhancer Identification Through Unified Enhancer Call Pipeline

343  We applied the uniform enhancer call pipeline to all datasets to standardize the identification of
344 enhancer regions. In the ATAC-STARR-seq dataset, while all accessible regions characterized
345 by ATAC-seq peaks were initially included in the assay, 91.20% were statistically tested for
346  regulatory activity in at least one orientation (Fig. 3b). Furthermore, the effective coverage of
347  regions tested in both orientations within accessible chromatin was reduced to 64.72% (Fig. 3b).
348  Similarly, for the WHG-STARR-seq dataset, 96.61% of the entire human genome was included
349 in the assay; however, only 56.15% of regions were statistically assessed in at least one

350 orientation, with just 44.59% tested in both orientations (Fig. 3c). These findings reveal that the
351 effective coverage of genome-wide STARR-seq datasets is significantly lower than expected,
352  underscoring the importance of comprehensive reporting of tested regions to accurately evaluate
353  assay performance and coverage.

354  Using our unified pipeline, we identified 57 enhancer regions in TilingMPRA (ENCSR394HXI),
355 16,603 in LentiMPRA, 11,679 in ATAC-STARR-seq, and 25,505 in WHG-STARR-seq.

356  Notably, these enhancer regions exhibited significant regulatory activity in both orientations. For
357  the two TilingMPRA datasets (ENCSR817SFD and ENCSR363XER), which tested elements
358  exclusively in one orientation, we adapted our pipeline to perform orientation-dependent

359 analysis, identifying 2,117 enhancer regions in ENCSR817SFD and 3,761 in ENCSR363XER.

360  To evaluate the significance of making orientation-independent enhancer calls, we investigated
361 their epigenomic features by analyzing 2,000-bp windows centered on these

362  regions. Specifically, we compared the epigenomic features of orientation-independent enhancer
363  regions to those of regions that were tested in both orientations but exhibited significant activity
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364  inonly one, leveraging ENCODE datasets for DNase-seq, ATAC-seq, and ChiP-seq (H3K4me3
365 and H3K27ac) in the K562 call line. Orientation-independent enhancers displayed higher

366  chromatin accessibility, as indicated by stronger DNase-seq and ATAC-seq signal intensities
367  compared to enhancers active in only one orientation across all datasets (Fig. 3d). Additionally,
368 they exhibited greater enrichment of both promoter- and enhancer-associated histone

369  modifications, with a more pronounced bimodal patter around their centers (Fig. 3e). These

370  findings suggest that orientation-independent enhancers are more robustly marked by

371  epigenomic features characteristic of active regulatory elements and highlight the importance of
372  making orientation-independent enhancer calls.

373 We also compared the enhancer regions identified through our unified processing pipeline with
374  the original enhancer calls reported by each laboratory. Across all datasets, uniformly processed
375  enhancer regions exhibited higher chromatin accessibility, as evidenced by stronger DNase-seq
376  and ATAC-seq signals (Fig. 3f). Notably, while some enhancer calls from the unified pipeline
377  were in inaccessible regions, they were still more enriched in accessible regions compared to
378  original lab-reported peaks in the WHG-STARR-seq dataset (Fig. 3f). Additionally, histone
379  modification profiles confirmed that orientation-independent enhancer regions identified by the
380 unified pipeline were more strongly marked by H3K4me3 and H3K27ac compared to lab-

381  reported enhancer regions (Fig. 3g). These results highlight the advantages of our unified

382  pipeline in enhancing the confidence of enhancer identification and providing a more reliable
383  foundation for comparative and functional studies.

384  Enhanced Consistency Across Assay Using Uniform Processed Enhancer Calls

385  With both active and inactive regions recorded through our uniform enhancer call pipeline, we
386  reassessed assay consistency by evaluating how many enhancers identified in one assay were
387  also identified as enhancers in others. To achieve this, we conducted pairwise comparisons by
388  assessing the overlap between enhancer regions from one assay and all tested regions in another.
389  Because our enhancer regions were defined in an orientation-independent manner, inactive

390 regions were also generated by merging elements or genomic bins tested in both orientations that
391 lacked significant enhancer activity.

392  For each pairwise comparison, enhancer regions from assay A were evaluated against all tested
393  regions in assay B, and vice versa, as overlaps were not necessarily symmetric. In cases where an
394  enhancer region overlapped multiple tested regions in another assay, or multiple enhancer

395  regions overlapped a single tested region, we assigned the best overlap based on the highest

396  number of overlapping base pairs to minimize redundancy. We then calculated the JI and

397  recorded both the number of enhancer regions that were also classified as enhancers in the other
398  assay and the total number of enhancer regions tested. By restricting comparisons to commonly
399  tested regions, this approach provided a more accurate and comprehensive assessment of cross-
400  assay consistency.

401  Using the minimal overlap threshold (>1-bp overlap), we observed modest improvements in
402  assay consistency, as indicated by higher JI values (Fig. 4a), though the improvement was not
403  statistically significant (one-sided Wilcoxon paired test, p = 0.11). However, applying the >50%
404  reciprocal overlap threshold resulted in a significant increase in cross-assay consistency, with Jl
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405  values substantially higher than those based on lab-reported enhancer regions (one-sided
406  Wilcoxon paired test, p = 0.02). These findings demonstrate that implementing a uniform
407  enhancer call pipeline and refining comparison strategies improve cross-assay consistency,
408  highlighting the importance of standardized processing in functional characterization studies.

409  Sequence Overlap and Assay-Specific Factors Influence Cross-Assay Consistency

410  While previous comparisons using lab-reported enhancer regions showed lower agreement

411  across assays when a stricter overlap criterion (=50% reciprocal overlap) was applied,

412  comparisons using uniformly processed data demonstrated the opposite trend: most pairwise
413  comparisons exhibited increased JI values under the stricter criterion compared to the >1-bp
414  threshold (Fig. 4a). For instance, when comparing LentiMPRA enhancers to tested regions in
415 ATAC-STARR-seq and WHG-STARR-seq, the proportion of consistently active regions rose
416  from 19% and 24% (using a >1-bp threshold) to 78% and 80% (using >50% reciprocal overlap),
417  respectively. A similar pattern was observed in pairwise comparisons between ATAC-STARR-
418 seq and WHG-STARR-seq (Fig. 4b,c), indicating that enhancer identification is more consistent
419  when comparing sequences with greater overlap.

420  Despite the overall increase in consistency with more stringent overlap criteria, assay

421  consistency remained largely unchanged when comparing enhancer regions identified in ATAC-
422  STARR-seq and WHG-STARR-seq to those tested in LentiMPRA, regardless of the overlap
423  threshold (Fig. 4b,c and Extended Data Fig. 4a). This suggests that assay-specific factors, rather
424 than sequence overlap alone, play a dominant role in determining cross-assay agreement for

425  LentiMPRA. Given that LentiMPRA positions candidate sequences upstream of a reporter gene,
426  we suspected that its ability to capture promoter activity rather than enhancer activity is a key
427  factor influencing cross-assay agreement.

428  To test this, we assessed assay consistency separately in proximal and distal regions.

429  TilingMPRA is excluded from this analysis due to limited sample size. Tested regions were
430 classified as proximal if >90% of their sequence overlapped within 500 bp of a protein-coding
431  TSS (based on GENCODE*! annotation v45) and distal otherwise. Stratifying comparisons by
432  TSS proximity revealed that ATAC-STARR-seq and WHG-STARR-seq exhibited significantly
433  higher consistency with LentiMPRA in proximal regions than in distal regions. Specifically,
434  ~62%-73% of proximal enhancer regions identified by STARR-seq assays were also active in
435  LentiMPRA, whereas only ~33%-47% of distal enhancer regions showed consistent activity
436  (Fig. 4d,e and Extended Data Fig. 4b,c). Notably, these proportions differed only when

437  comparing distal versus proximal regions but remained largely unchanged across different

438  overlap thresholds (Fig. 4d,e). These findings suggest that LentiMPRA is more likely capturing
439  promoter activity rather than enhancer activity as measured in genome-wide STARR-seq assays,
440  emphasizing that assay-specific factors play a dominant role in determining cross-assay

441  consistency when comparing to LentiMPRA.

442  Evaluating Functional Support for Enhancer-Like and Promoter-Like Sequences in cCRES

443  Epigenomic features such as DNA accessibility and histone modifications have long been
444  recognized as key indicators of active enhancers®>84°, Leveraging these features, the ENCODE
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445  Consortium established a registry of cCREs®. To assess how well these elements are functionally
446  validated by massively parallel reporter assays, we examined their coverage and activity in
447  LentiMPRA, ATAC-STARR-seq, and WHG-STARR-seq datasets.

448  Since cCREs were not specifically designed as targeted sequences in these assays, we assessed

449  their coverage by identifying overlaps between cCRE elements and tested regions. A cCRE was
450  considered covered if it had at least a 1-bp overlap with a tested region. To further characterize

451  their representation across assays, we categorized covered cCREs into three mutually exclusive
452  groups based on their overlap extent: high (=80% reciprocal overlap), moderate (50%-80%

453  reciprocal overlap), and low (all other overlap). Detailed coverage statistics are provided in

454  Extended Data Fig. 5a and Supplementary Table 3.

455  To evaluate the functional relevance of cCCREs, we analyzed their active rates across

456  LentiMPRA, ATAC-STARR-seq, and WHG-STARR-seq (Extended Data Fig. 5b). In both

457  genome-wide STARR-seq datasets, CCREs associated with enhancer-like and promoter-like
458  signatures—dELS, pELS, and PLS—demonstrated the highest active rates among all cCRE
459  subtypes, whereas other cCRE categories exhibited lower active rates. Specifically, high-overlap
460 dELS, pELS, and PLS each showed active rates ranging from 46% to 89% in ATAC-STARR-
461  seq and WHG-STARR-seq (Extended Data Fig. 5b), highlighting their strong functional

462  relevance in both genome-wide STARR-seq datasets. In contrast, the active rates of other cCCRE
463  subtypes declined sharply, with CA-H3K4me3 and CA-TF elements exhibiting moderate active
464  rates (22%-49%), followed by CA-CTCF and CA-only elements, which showed more limited
465  active rates (5%-9%). As expected, low-DNase elements, which are generally classified as

466  inactive cCREs, displayed the lowest active rates (2%-4%), only slightly higher than regions
467  without any cCRE overlap (0.4%-0.5%).

468  While the overall active rate patterns were consistent across cCCRE subtypes in genome-wide
469 STARR-seq datasets, LentiMPRA exhibited a distinct trend. PLS elements displayed the highest
470  active rate (51%), whereas dELS (18%) and pELS (19%) showed similar activity levels to CA-
471  H3K4me3 (21%), CA-TF (14%), and CA-only (15%) (Extended Data Fig. 5b). These findings
472  again suggest that LentiMPRA may preferentially capture promoter-associated activity rather
473  than enhancer activity, distinguishing it from genome-wide STARR-seq assays.

474 Additionally, low-DNase elements exhibited an 8% active rate in LentiMPRA, markedly higher
475  than the 2%-4% observed in ATAC-STARR-seq and WHG-STARR-seq. Regions without

476  overlap with any cCREs also showed a higher active rate (2%) compared to the minimal activity
477  levels detected in ATAC-STARR-seq and WHG-STARR-seq (0.4%-0.5%). These results

478 indicate that, beyond its tendency to capture promoter activity, LentiMPRA readouts are

479  influenced by additional assay-specific factors. One possible explanation is that LentiMPRA’s
480 random genomic integration may position low-DNase elements into accessible chromatin

481  regions, artificially increasing their apparent activity.

482  Collectively, these findings highlight the predictive power of cCREs in identifying active

483  enhancers in reporter assays, particularly for dELS, pELS, and PLS, which exhibited

484  significantly higher activity than other cCCRE categories. The near absence of enhancer activity in
485  regions lacking biochemical features underscores the essential role of chromatin accessibility and
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486  histone modifications in defining functional enhancers. At the same time, the distinct activity
487  patterns observed in LentiMPRA, likely reflecting its preference for promoter-associated

488  sequences and other assay-specific influences, emphasize the need to carefully consider assay-
489  specific factors when interpreting results and integrating data from different massively parallel
490  reporter assays.

491  Transcription as a critical mark of Active Enhancers

492  In addition to epigenomic features, enhancers are distinguished by their ability to generate

493  eRNAs through divergent transcription#243 Tippens et al. demonstrated that divergent

494  transcription serves as a more precise marker of active enhancers than histone modifications and
495 identified a fundamental enhancer unit based on divergent transcription start sites (TSSs)*2.

496  Expanding on this, Yao et al. showed that GRO/PRO-cap is the most effective experimental
497  approach to identify eRNAs and their divergent TSSs, and further compiled an enhancer

498  compendium with a unified definition of enhancers based on divergent transcription®*.

499  Leveraging uniformly processed enhancer calls from large-scale reporter assays, we next

500 examined these transcriptional characteristics of enhancers. Using the same analytical framework
501 applied to cCREs, we assessed the coverage of GRO-cap enhancers**(divergent elements

502 identified by PINTS from GRO-cap data) across the three assays. Detailed statistics are provided
503 in Supplementary Table 4 and Extended Data Fig. 5d.

504  High-overlap GRO-cap enhancers exhibited strong enhancer activity, with 87% and 78% being
505 active in ATAC-STARR-seq and WHG-STARR-seq, respectively (Extended Data Fig. 5e).

506  Furthermore, GRO-cap enhancers consistently displayed significantly higher active rates

507  compared to regions that neither overlapped with any GRO-cap elements nor exhibited GRO-cap
508 signals (Extended Data Fig. 5e,f). Notably, while regions devoid of both transcriptional signals
509 and overlap with GRO-cap elements exhibited the lowest active rates across all three assays

510  (0.7%-4%), regions that did not overlap with any annotated GRO-cap elements but still

511  contained detectable GRO-cap signals showed slightly higher, albeit low, levels of activity (2%-
512  11%) (Extended Data Fig. 5f). These findings reinforce the strong functional relevance of GRO-
513  cap enhancers in reporter assays, demonstrating that divergent transcription is a defining

514  characteristic of active enhancers and supporting the enhancer architecture defined by previous
515  studies'®*,

516  To further explore the functional relevance of transcriptional level, we categorized tested regions
517 in LentiMPRA, ATAC-STARR-seq, and WHG-STARR-seq into four transcription-level classes
518  (high, medium, low and none) based on GRO-cap signals* (see Methods) and calculated the
519  active rates within each category. Our analysis revealed that regions with higher transcription
520 levels were significantly more likely to function as enhancers across all three assays (Fig. 5a).
521  Regions with no or low GRO-cap signals exhibited minimal enhancer activity, particularly in
522  ATAC-STARR-seq and WHG-STARR-seq, where active rates remained below 1%. Regions
523  with medium transcription level displayed moderate enhancer activity, with active rates around
524  10% across assays, while highly transcribed regions exhibited the highest active rates, with

525  approximately 30% of tested regions classified as active enhancers (Fig. 5a). These findings
526  reinforce the role of transcription as a key marker of enhancer activity across reporter assays.
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527  Despite the low active rates observed in regions with little or no transcription, thousands of such
528  regions were still identified as active enhancers across all three assays (Fig. 5a). This raised

529  concerns that a subset of these enhancer calls might represent false-positive hits. To explore this
530 possibility, we examined assay consistency across transcription classes, hypothesizing that

531  regions with lower transcription levels would exhibit reduced cross-assay agreement, suggesting
532  ahigher prevalence of false positives. Indeed, using >50% reciprocal overlap as the comparison
533  criterion, we observed a positive relationship between transcription levels and assay consistency
534  (Fig. 5b, Extended Data Fig. 6). Regions lacking detectable transcription signals exhibited the
535 lowest Jaccard Index values across all pairwise comparisons (Fig. 5b), indicating poor

536  reproducibility across assays. Conversely, high-transcription regions exhibited the highest assay
537  consistencies (Fig. 5b, Extended Data Fig. 6d). These results support the hypothesis that these
538  reporter assays may Yield a greater proportion of false positives in regions with lower

539 transcription.

540  Transcription Enhances the Predictive Power of Biochemical Features for Enhancer
541  Activity

542  Next, we assessed whether transcription improves the ability of biochemical features to predict
543  active enhancers. We analyzed tested cCREs with high overlap (>80% reciprocal overlap) with
544  reporter assay regions and classified them as either transcribed or untranscribed based on

545  detectable GRO-cap signals. We then compared their active rates across assays.

546  Untranscribed cCREs exhibited low enhancer activity in all three assays (~0.8%-4%), with active
547  rates only slightly higher than untranscribed regions that lacked cCRE or PINTS annotations

548  (~0.3%-1%) (Fig. 5¢). Untranscribed dELS, pELS, and PLS showed slightly elevated active rates
549  (~0%-9%), though their sample sizes were limited.

550 In contrast, transcribed cCREs displayed significantly higher active rates across all assays

551  (~14%-29%) (Fig. 5c). This trend was particularly pronounced for transcribed dELS, pELS, and
552  PLS, which exhibited much higher active rates (~17%-75%) than their untranscribed

553  counterparts (Fig. 5¢). These results indicate that dELS, pELS, and PLS contain a higher

554  proportion of functional enhancers than other cCRE categories and suggest that transcription
555  serves as an additional predictive layer beyond traditional biochemical features such as

556  chromatin accessibility and histone modifications (H3K4me3 and H3K27ac).

557  Further stratification of tested dELS, pELS, and PLS by transcription levels reinforced the strong
558 relationship between transcription and enhancer activity across all assay types (Fig. 5d). Highly
559 transcribed dELS, pELS, and PLS exhibited particularly high active rates, reaching 83% in

560 ATAC-STARR-seq and 74% in WHG-STARR-seq (Fig. 5d). These findings emphasize

561 transcription as a critical defining feature of active enhancers, complementing biochemical

562  features and improving the precision of enhancer annotation.

563


https://doi.org/10.1101/2025.03.25.645321

bioRxiv preprint doi: https://doi.org/10.1101/2025.03.25.645321; this version posted March 27, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

564  Discussion

565  This study provides a comprehensive evaluation of a total of six reporter assay datasets generated
566 by different laboratories, representing four major MPRA and STARR-seq assay types. Our

567  analysis revealed substantial inconsistencies in enhancer identification across assays using

568 original lab-reported enhancer calls, primarily driven by technical variations in experimental

569  workflows and data processing methodologies. By applying a standardized analytical framework,
570  we systematically assessed dataset quality, cross-assay consistency in enhancer identification,
571 and the functional validation of enhancers based on epigenomic features and transcriptional

572  features. Our findings highlight both the strengths and limitations of current high-throughput

573  reporter assays in capturing enhancer activity and underscore the need for standardized

574  experimental and analytical approaches in functional characterization studies.

575  Through re-processing and quality evaluation of all datasets, we identified insufficient fragment
576  coverage, possibly stemming from inadequate sequencing depth and low transfection efficiency,
577  as the critical limitation in genome-wide STARR-seq assays. These factors compromise not only
578  the reproducibility of enhancer identification but also the effective coverage of tested genomic
579  regions. Particularly in genome-wide assays, large proportions of the genome may remain

580 untested or excluded due to low read depth, leading to an overestimation of genome-wide

581  coverage. Addressing these technical challenges is essential for improving the reliability and

582  completeness of genome-wide enhancer screens.

583  To address technical discrepancies across assays, we developed and applied a uniform enhancer
584  call pipeline designed to produce orientation-independent enhancer calls. This pipeline

585 incorporated features such as normalization to negative controls, stringent statistical thresholds,
586 and a requirement for enhancer activity in both orientations. Our results demonstrated that this
587  unified approach successfully mitigated many sources of technical variation, yielding a more
588 reliable and consistent set of enhancer regions across datasets. Significantly, our findings

589  emphasized the critical role of orientation-independent analysis and the inclusion of negative
590 controls in enhancing the reliability of enhancer identification. Testing fragments in both

591 orientations and evaluating regulatory activities relative to negative controls proved essential for
592  reducing technical biases. However, we acknowledge that the stringent criteria employed in our
593  pipeline, particularly the requirement for data in both orientations, may have contributed to false-
594  negative results, especially for regions with limited or missing data.

595  Moreover, the primary goal of our unified enhancer call pipeline was to address technical factors
596  underlying inconsistencies in enhancer identification across assays, rather than to

597  comprehensively optimize sensitivity and specificity for all applications. Future studies should
598 aim to systematically evaluate the trade-offs between sensitivity and specificity in various

599  enhancer call pipelines. Such efforts will be crucial for refining enhancer identification

600 methodologies, particularly as functional characterization assays become increasingly diverse
601  and complex.

602  Using uniformly processed enhancer calls, we conducted a comprehensive evaluation of cross-
603  assay consistency and found improved agreement in enhancer identification across assays.
604  Further analysis demonstrated that increasing sequence overlap thresholds substantially
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605 improved agreement, particularly in genome-wide STARR-seq datasets. However, LentiMPRA
606  exhibited a distinct pattern, with its enhancer calls showing stronger agreement with STARR-seq
607  assays in proximal regions, reinforcing its tendency to capture promoter-associated activity

608 rather than distal enhancer activity. Additionally, LentiMPRA’s random integration mechanism
609 likely introduces variability by positioning sequences into different chromatin environments,

610  which may either enhance or suppress activity depending on the local chromatin state. These
611  findings emphasize the importance of considering assay-specific characteristics when integrating
612  data from different reporter assays to ensure accurate interpretation of enhancer function.

613 By evaluating the functional relevance of candidate cis-regulatory elements (cCCRES), we

614  confirmed that epigenomic features, such as chromatin accessibility and histone modifications,
615  serve as strong predictors of enhancer activity. cCCRES associated with enhancer- and promoter-
616  like signatures—dELS, pELS, and PLS—exhibited significantly higher active rates across

617 genome-wide STARR-seq datasets compared to other cCRE subtypes, reinforcing their

618 biological relevance. Conversely, elements lacking chromatin accessibility and histone

619  modifications displayed minimal activity, underscoring the essential role of these epigenomic
620  features in defining active enhancers.

621 LentiMPRA, however, displayed distinct activity patterns, with higher active rates for PLS and
622  relatively lower activity for dELS and pELS compared to STARR-seq datasets. These

623  differences suggest that LentiMPRA preferentially identifies promoter-driven regulatory

624  elements rather than enhancers, further highlighting the need to consider assay-specific biases
625  when interpreting MPRA data. Additionally, LentiMPRA showed unexpectedly higher active
626 rates for low-DNase elements, possibly due to its random genomic integration placing these
627  elements into more accessible chromatin regions, altering their apparent activity. These findings
628  reinforce the need for careful interpretation of MPRA data.

629  Beyond epigenomic features, transcription emerged as a key determinant of enhancer function,
630  with regions with higher transcription level displaying significantly higher activity across

631  reporter assays. High transcription levels were strongly correlated with active rates of tested

632  regions, whereas regions with low or no transcription exhibited greater cross-assay variability,
633  suggesting a higher likelihood of false-positive enhancer calls. This highlights the importance of
634  incorporating transcriptional markers to refine enhancer predictions and reduce misclassification.
635  Furthermore, integrating transcriptional activity with epigenomic evidence improved enhancer
636  annotation, as transcribed cCREs—particularly dELS, pELS, and PLS—showed significantly
637  higher active rates than their untranscribed counterparts. These results suggest that transcription
638  serves as an additional predictive layer beyond traditional chromatin features and should be

639  considered when defining functional enhancers.

640  This study represents the first systematic evaluation of MPRA and STARR-seq datasets in real-
641  world applications. By identifying critical technical factors and implementing a standardized
642 analytical framework, we provide a foundation for improving experimental protocols and data
643  processing methods in high-throughput reporter assays. Our uniform enhancer call pipeline

644  offers a robust approach to enhancing data consistency and can serves as a benchmark for future
645  studies.

646
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647  The analytical framework established in this study can be extended to compare results across
648  diverse functional characterization assays, such as CRISPR-based screens. Furthermore, the

649 reliable sets of enhancer regions identified through this pipeline can be leveraged to investigate
650  sequence features, enhancer-promoter interactions, and the structural basis of enhancer activity.
651  Such analyses will deepen our understanding of enhancer biology and elucidate the mechanisms
652  underlying assay-specific variability.

653

654  In summary, this study highlights the importance of standardization in enhancer characterization
655  assays and demonstrates the value of integrating transcriptional and biochemical evidence for
656  more accurate enhancer predictions. By addressing the technical and analytical challenges

657 identified here, future studies can advance the functional characterization of human enhancers,
658  ultimately improving our understanding of gene regulation and its implications for human health
659 and disease.

660
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661 Methods

662  Original Reporter Assay Data Acquisition and Processing

663  Element quantification data for TilingMPRA datasets and peak regions from ATAC-STARR-seq
664 and WHG-STARR-seq datasets were obtained from the ENCODE portal®®-28, with

665  corresponding accession numbers listed in Supplementary Table 1. LentiMPRA quantification
666 data and enhancer classifications were retrieved from its original publication®® and are also

667  accessible through the ENCODE portal®6-28,

668  To define enhancer regions in TilingMPRA datasets, we applied a threshold of log2 fold change
669  (log2FC) > 1 with an adjusted p-value < 0.01. For the ATAC-STARR-seq dataset, regions with
670 log2FC > 0 and an adjusted p-value < 0.01 were classified as enhancer regions. The total number
671  of enhancer regions identified in each dataset, as well as the final numbers after merging

672  overlapping regions, are summarized in Supplementary Table 1.

673  Cross-Assay Comparison of Lab-Reported Enhancer Regions

674  To assess the overlap between enhancer regions reported by different laboratories, we measured
675 the fraction of enhancer regions in one assay that overlapped with enhancer regions identified in
676  another. We performed pairwise comparisons across all datasets using two criteria: a minimal
677  overlap threshold of 1 bp to maximize inclusion of partially overlapping regions (Extended Data
678  Fig. 1b) and a > 50% reciprocal overlap threshold to provide a stricter assessment of enhancer
679  reproducibility (Extended Data Fig. 1c). The number of overlapping enhancer regions was

680  recorded for each pairwise comparison (Fig. 1b and Extended Data Fig. 2a).

681  Cross-Assay Comparison of Uniformly Processed Enhancer Regions

682  To systematically evaluate enhancer identification consistency across assays, we first

683  distinguished enhancer regions from inactive regions in genome-wide STARR-seq datasets.
684  Inactive regions were defined as genomic bins tested in both orientations that did not overlap
685  with any orientation-independent enhancer regions, with overlapping bins merged to form
686  continuous inactive regions.

687  For each pairwise comparison between assay A and assay B, we first identified orientation-

688 independent enhancer regions in assay A that overlapped with tested regions in both orientations
689 inassay B. The tested regions in assay B included both orientation-independent enhancer regions
690 and inactive regions. We then quantified the proportion of enhancer regions in assay A that were
691 not only tested but also identified as enhancers in assay B. This proportion was calculated as the
692  number of enhancer regions identified in both assays divided by the total number of enhancer
693  regions in assay A that overlapped with tested regions in assay B.

694  We applied the same two overlap criteria to assess cross-assay consistency: >1 bp overlap for
695  broad inclusion and >50% reciprocal overlap for a more stringent evaluation. These comparisons
696  were conducted across all datasets, and the results were reported in Heatmaps.
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697  Jaccard Index Calculations

698  To quantitatively assess enhancer identification consistency across assays, we computed the
699  Jaccard Index (JI) for each pairwise comparison. The Jaccard Index measures the similarity
700  between two datasets, ranging from 0 to 1, with lower values indicating weaker agreement
701  between assays.

702  The Jaccard Index for a given pair of assays, A and B, is defined as:
703  JI(A,B) = |ABJ|AB|

704  For comparisons based on lab-reported enhancer regions, A and B represent the sets of enhancer
705  regions identified in two different assays. Given that enhancer regions vary in size across

706  datasets and that multiple enhancer regions in one dataset may overlap multiple regions in

707  another, |AB| is defined as the maximum number of overlapping enhancer regions observed in
708 either direction of comparison (A vs. B and B vs. A). |AB| represents the total number of unique
709  enhancer regions across both assays.

710  For comparisons based on uniformly processed enhancer calls, A represents the set of

711  orientation-independent enhancer regions in assay A that were also tested in both orientations in
712  assay B, and B represents the corresponding set in assay B tested in both orientations in assay A.
713  |AB| is also determined by the maximum number of overlapping enhancer regions across the two
714 directional comparisons (A vs. B and B vs. A).

715  Reprocessing of Genome-Wide STARR-seq Datasets

716  BAM files for ATAC-STARR-seq and WHG-STARR-seq datasets were retrieved from the
717  ENCODE portal®®-28, We adapted parts of the STARRPeaker!® pipeline to process these BAM
718  files and obtain original fragment counts for each library.

719  To obtain a refined set of original fragments and their corresponding raw counts, we applied a
720  series of stringent filtering criteria. Unmapped, secondary, and chimeric alignments were

721  discarded to retain only primary alignments. Reads with a mapping quality score below 10 were
722  excluded to ensure high-confidence sequencing data. To mitigate potential biases from PCR

723 amplification, reads with identical genomic coordinates were collapsed, a step applied to DNA
724  replicates in ATAC-STARR-seq and across all WHG-STARR-seq libraries. For RNA libraries in
725 ATAC-STARR-seq, PCR duplicates were removed using unique molecular identifiers (UMIs) to
726  distinguish true biological duplicates from amplification artifacts.

727  Genomic Bin Count Generation

728  To generate genomic bin counts, we used pybedtools*64’ to partition the human genome into
729  100-bp bins with a 10-bp step size. For each bin, we summed counts of fragments that fully
730  covered the genomic bin (Extended Data Fig. 3a).
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731  Quality Assessment of Reporter Assay Datasets: Replicate Reproducibility

732 To assess the reproducibility of replicates across datasets, we calculated Pearson correlation
733  coefficients (p) for log-transformed counts per million (logCPM) of DNA and RNA counts, as
734 well as log2(RNA/DNA) ratios. Correlations were computed between biological replicates
735  within DNA and RNA libraries for each dataset, and the results were averaged to provide an
736  overall measure of replicate reproducibility.

737  For TilingMPRA and LentiMPRA datasets, replicate reproducibility was evaluated at the

738  fragment level, where enhancer activity was quantified per tested sequence. In contrast, for

739  genome-wide STARR-seq datasets, reproducibility was assessed at both the fragment level and
740  the genomic bin level to account for the different resolution of data processing. Additionally, for
741  the ATAC-STARR-seq dataset, we separately evaluated Pearson correlations in two conditions:
742  across the entire genome and within accessible regions characterized by ATAC-seq peaks

743  identified from DNA libraries in ATAC-STARR-seq.

744 Quality Assessment of Reporter Assay Datasets: Library Recovery Rate

745  The library recovery rate was defined as the proportion of unique fragments detected in a given
746 library relative to the total number of unique fragments identified across the entire dataset,

747  encompassing all DNA and RNA libraries. A fragment was considered part of the dataset’s total
748  unique fragments if it was detected in at least one library, rather than requiring its presence in
749  every library. This total serves as an estimate of the full set of input candidate fragments.

750  This metric provides insight into the reproducibility of fragment detection across replicates and
751  carries slightly different implications for DNA and RNA libraries. In DNA libraries, higher

752  recovery rates indicate greater consistency in library preparation and sufficient sequencing depth,
753  whereas in RNA libraries, higher recovery rates reflect both efficient transfection and adequate
754 sequencing depth. Conversely, lower DNA library recovery rates may suggest insufficient

755  sequencing depth or stochastic loss of fragments during library preparation, while lower RNA
756 library recovery rates could indicate transfection inefficiencies or suboptimal sequencing depth.

757 By evaluating library recovery rates for DNA and RNA libraries, we can better assess dataset
758 quality, identifying potential technical limitations affecting dataset quality. The average library
759  recovery rates were calculated for DNA and RNA libraries separately across assays and are
760  presented in Fig. 2d.

761  Evaluation of Assay Coverage in the DNA libraries in Genome-wide STARR-seq Datasets

762  To assess potential limitations in sequencing depth within genome-wide STARR-seq datasets,
763  we examined library complexity and genome-wide coverage by applying various read depth

764  thresholds in DNA libraries. We imposed minimum raw count thresholds of 10, 20, 50, and 100
765  across all DNA libraries to segment the datasets and evaluate library complexity and genome-
766  wide coverage for each remaining subset of the datasets. These assessments were conducted after
767  binning original fragments into genomic bins.

768  Since the DNA libraries of genome-wide STARR-seq assays were sequenced before transfection,
769  they reflect the original fragment distribution across the genome. The representation of a region
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770  inthe input DNA libraries plays a crucial role in determining its likelihood of being transfected
771  and subsequently detected in the output RNA libraries. If a region was underrepresented in the
772  input, itis less likely to have been thoroughly tested for enhancer activity in the RNA output.

773  We utilized pybedtools*®4’ to quantify the genomic coverage by computing the number of base
774  pairs covered at each threshold. The percentage of genome-wide coverage was determined by
775  dividing the number of covered base pairs by the total number of base pairs in the hg38 human
776  reference genome*,

777  For ATAC-STARR-seq, which was specifically designed to enrich open chromatin regions
778  rather than provide full genome coverage, we additionally evaluated its coverage within open
779  chromatin regions, as defined by ATAC-seq peaks from its DNA libraries. The open chromatin
780  coverage of ATAC-STARR-seq was calculated by dividing the number of base pairs covered
781  within ATAC-seq peaks by the total number of base pairs in these peaks.

782  To provide a comparison, we also assessed open chromatin coverage for LentiMPRA, as its
783  candidate sequences were selected from DNase-seq peaks. DNase-seq peak regions were

784  obtained from the ENCODE portal®®-28 (Accession: ENCFF185XRG). The open chromatin

785  coverage for LentiMPRA was calculated using the same approach as in ATAC-STARR-seq, by
786  determining the fraction of base pairs covered within DNase-seq peak regions.

787  Uniform Enhancer Call Pipeline

788  To quantify enhancer activity based on log2(RNA/DNA) ratios, we adapted the Limma-Voom
789  pipeline* with key modifications tailored to different datasets. While the linear model

790  framework was retained, we implemented dataset-specific filtering strategies, a modified TMM
791  normalization approach, and a Z-score-based classification method to identify enhancer regions
792 in an orientation-independent manner.

793  Uniform Enhancer Call Pipeline: Dataset-Specific Filtering Strategy

794  Our filtering strategy was adapted from the filterByExpr function in edgeR®. Initially, raw
795  counts were transformed into log-counts per million (logCPM) to normalize for variations in
796 library size. The filtering threshold was determined by computing the logCPM equivalent of a
797  predefined raw count cutoff, ensuring sufficient read depth for reliable downstream statistical
798  analysis.

799  Fragments were retained if their logCPM values exceeded the threshold across all DNA libraries
800 or, in cases where stricter filtering would excessively reduce coverage, in a minimum required
801  number of libraries, regardless of whether they were DNA or RNA libraries. This approach

802  ensured a balance between stringent filtering for reliable enhancer activity detection and

803  preserving sufficient genome-wide coverage across diverse reporter assay datasets.

804  For TilingMPRA and LentiMPRA, the filtering threshold was determined using the smallest

805 DNA library, applying a raw count threshold of 10 to establish the corresponding logCPM

806 cutoff. In ATAC-STARR-seq, to accommodate the larger complexity of the dataset while

807  maintaining sufficient coverage, the threshold was calculated using the average DNA library size


https://doi.org/10.1101/2025.03.25.645321

bioRxiv preprint doi: https://doi.org/10.1101/2025.03.25.645321; this version posted March 27, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

808  with araw count of 20. In WHG-STARR-seq, where only a single DNA library was available,
809  the logCPM threshold was instead based on the smallest library across both DNA and RNA

810 libraries, using a raw count of 10. Unlike the other assays, where filtering was applied across all
811 DNA libraries, WHG-STARR-seq employed a more lenient criterion, retaining fragments if they
812  met the logCPM threshold in at least two libraries, regardless of type. This dataset-specific

813  adaptation ensured that filtering remained stringent enough to remove fragments with low read
814  depth while preserving sufficient genome-wide coverage for reliable enhancer identification.

815  Uniform Enhancer Call Pipeline: Normalization Strategy

816  To normalize for library size differences, we applied the Trimmed Mean of M-values (TMM)
817  normalization from edgeR3"%%, following the standard Limma-Voom framework. In ATAC-
818 STARR-seq and WHG-STARR-seq, where most genomic bins were expected to exhibit no

819  regulatory activity (i.e., showing no significant difference between RNA and DNA libraries), we
820  applied the conventional TMM normalization method, assuming that the majority of regions had
821  minimal transcriptional changes.

822  For LentiMPRA and TilingMPRA, we implemented a modified TMM normalization approach to
823  address assay-specific biases. These assays included designated negative control sequences, and
824  in the case of LentiMPRA, candidate sequences were particularly enriched for protein-coding
825  promoters and potential enhancer elements®. This enrichment could result in a dataset

826  disproportionately composed of regulatory-active fragments, making the standard assumption
827  that most fragments were not differentially expressed less applicable. To address this, we

828  modified TMM normalization to rely exclusively on negative control elements, allowing for a
829  more accurate adjustment of library size and composition biases without being influenced by the
830  overrepresentation of active regulatory elements. This refinement optimized normalization for
831 the unique design of these assays, ensuring more reliable quantification of enhancer activity.

832  Uniform Enhancer Call Pipeline: Enhancer Classification and Statistical Significance

833  Using the Limma-Voom procedure, log2(RNA/DNA) ratios were then calculated to quantify
834  enhancer activity for each fragment or genomic bin. Rather than applying an arbitrary threshold,
835 we employed a Z-score-based approach to identify regions with significantly elevated activity
836  compared to background transcription levels. Background transcription levels were estimated
837  using negative control elements, and the log2(RNA/DNA) threshold was set at the 95th

838  percentile of negative control distributions.

839  For genome-wide STARR-seq datasets that lacked dedicated negative controls, genomic bins
840 located within exonic regions were used as surrogate controls to determine the log2(RNA/DNA)
841 threshold. This approach was based on previous studies indicating that enhancers are primarily
842 located in non-coding regions?63%4° To further refine enhancer identification and mitigate

843  orientation bias, enhancer regions were required to exhibit significant activity in both forward
844  and reverse orientations. First, fragments or genomic bins tested in both orientations were

845 identified. Regions were then classified as enhancers if their log2(RNA/DNA) ratios exceeded
846  the threshold and had an adjusted p-value < 0.05. Overlapping fragments or genomic bins were
847  merged to generate the final set of enhancer regions, ensuring a robust and unbiased

848 identification process.
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849  Uniform Enhancer Call Pipeline: Comprehensive Reporting and Dataset Summary

850  The pipeline provided a comprehensive reporting of both active and inactive regions, ensuring
851  accurate estimation of genome-wide coverage and facilitating robust cross-assay comparisons.

852  For genome-wide STARR-seq datasets, we reported multiple levels of coverage to reflect the
853  extent of assay representation. Assayed coverage included all genomic bins before applying

854 filters, representing the initial set of regions targeted in the experiment. Tested coverage

855  encompassed genomic bins that remained after applying filtering criteria, reflecting regions with
856  sufficient read depth for reliable enhancer activity quantification. Additionally, tested coverage
857 in both orientations was defined as the subset of tested genomic bins that were assayed in both
858  forward and reverse orientations, ensuring a stringent assessment of enhancer activity

859  independent of strand bias.

860  The final dataset included log2(RNA/DNA) ratios, Z-scores, and statistical significance metrics
861  for all tested genomic bins, as well as for bins tested in both orientations. Additionally, merged
862  orientation-independent enhancer regions were reported to provide a set of enhancer calls across
863  datasets. A summary of enhancer region counts, negative controls, and tested regions for each
864  dataset is provided in Supplementary Table 2.

865  Evaluation of Genomic Context to Compare Regions

866  To examine the genomic context of enhancer regions, including DNA accessibility and histone
867  modifications (H3K4me3 and H3K27ac), we compared lab-reported enhancer regions with

868  uniformly processed enhancer regions and orientation-independent enhancers with regions tested
869 in both orientations but identified as active in only one orientation. We utilized publicly available
870 datasets from the ENCODE portal®®-28, specifically DNase-seq data (ENCFF972GVB), ATAC-
871  seqdata (ENCFF102ARJ), H3K4me3 ChlP-seq data (ENCFF911JVK), and H3K27ac ChlIP-seq
872  data (ENCFF381NDD).

873  For visualization, we used deepTools* to generate metaplots of signal intensities across

874  enhancer regions. To compare lab-reported enhancer regions with uniformly processed enhancer
875  regions, we randomly sampled 5,000 enhancer regions from each dataset. Signal intensities were
876  plotted within a 2,000-bp window centered at the region midpoint to capture local epigenomics
877  features.

878  For the comparison between orientation-independent enhancer regions and those tested in both
879  orientations but were active in only one orientation, we first selected genomic bins that were
880 tested in both orientations. We then identified bins that were active in only one orientation,

881  merged overlapping bins into contiguous regions, and excluded any regions that overlapped with
882  orientation-independent enhancers. From each dataset, we randomly sampled 5,000 orientation-
883  independent enhancer regions and 5,000 regions that were active in only one orientation for

884  comparative analysis.
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885  Negative Control Regions in Genome-wide STARR-seq Datasets

886  Since the original ATAC-STARR-seq and WHG-STARR-seq assays did not include dedicated
887  negative controls, we leveraged their genome-wide coverage to define genomic bins overlapping
888  exonic regions as surrogate negative controls. This allowed for the implementation of a Z-score
889  approach in these datasets to establish a background transcription level for enhancer

890 classification.

891 To identify suitable genomic bins as negative controls, we extracted all exons of protein-coding
892  genes from the GENCODE v42 annotation (hg38)°!. Because the original fragments covering the
893  100-bp genomic bins could be substantially longer, we further excluded 300-bp flanking regions
894  on both sides of each exon to prevent potential overlap with adjacent intronic regions, which

895  could confound the regulatory activity measurements of exonic genomic bins. This filtering step
896 ensured that only mid-exonic regions were retained as the final negative control reference

897  regions.

898  We then identified all genomic bins that were fully contained within these negative control
899 reference regions. These bins were used exclusively in the Z-score approach to characterize
900 background transcription levels but were not used in the TMM normalization process.

901  Analysis of Coverage and Active Rate of cCCREs and GRO-cap Enhancers

902 The comprehensive reporting of both active and inactive regions in genome-wide STARR-seq
903 datasets enabled a systematic evaluation of the coverage and active rates of alternative enhancer
904  annotations, such as cCREs and GRO-cap enhancers, across assays.

905  We retrieved cCRE annotations for K562 cells (Accession: ENCFF286VQG) from the ENCODE
906 Portal’®-28, GRO-cap enhancers were defined as divergent elements identified by PINTS*4,

907  To determine the extent to which these enhancer annotations were tested in LentiMPRA, ATAC-
908 STARR-seq, and WHG-STARR-seq, we applied three mutually exclusive overlap categories: (1)
909  high-overlap (>80% reciprocal overlap), (2) moderate-overlap (50%-80% reciprocal overlap),
910 and (3) low-overlap (all other overlaps). The number of cCREs and GRO-cap enhancers tested in
911 each assay is provided in Supplementary Table 3 and Supplementary Table 4.

912  To assess the functional relevance of these tested elements, we calculated their active rates
913  within each overlap category. The active rate for each element type was defined as the proportion
914  of tested elements that exhibited significant regulatory activity.

915  Annotation of Transcription Levels for Tested Regions Using GRO-cap Signals

916  To compare the active rates of tested regions with different transcription levels, we annotated
917  each tested region with transcription levels based on GRO-cap signal data extracted from bigWig
918  files®.

919  To quantify the transcriptional activity within each tested region, we summed the GRO-cap
920 signal from both orientations and normalized it by the region size. The normalized transcription
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level for each region was computed as the total GRO-cap signal divided by the length of the
tested region.

Based on the normalized GRO-cap signal, we classified transcription levels into four categories:
(1) None, for regions with no detectable GRO-cap signal; (2) Low, for regions with normalized
GRO-cap signal <0.01; (3) Medium, for regions with normalized GRO-cap signal > 0.01 and <
0.08; and (4) High, for regions with normalized GRO-cap signal > 0.08.
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929  Supplementary Information

930 MPRA and STARR-seq Datasets Utilized in This Study
931 TilingMPRA

932  This study includes three TilingMPRA datasets generated by the same laboratory, designed to
933  screen enhancers within selected gene loci using a tiling approach with overlapping 200-bp

934  sequences.The first dataset, ENCSR394HXI, assayed tiling sequences in both orientations with a
935  5-bp sliding window across the FEN1, FADS1, FADS2, and FADS3 loci. The second dataset,
936 ENCSRO917SFD, tested tiling sequences in the forward orientation with a 50-bp sliding window
937 atthe MYC and GATAL loci. The third dataset, ENCSR363XER, analyzed tiling sequences in the
938  forward orientation using a 100-bp sliding window, targeting the LMO2, HBE1, RBM38, HBA2,
939 and BCL11A loci.

940 The experimental design of these TilingMPRAs follows the classic MPRA framework, utilizing
941  the pGL4.23 vector, with barcodes incorporated into the 3' UTR of the reporter gene. These
942  assays were performed episomally. Negative and positive controls were included in all three
943  datasets, and candidate elements were synthesized using oligonucleotide synthesis. DNA

944  libraries were sequenced prior to transfection, with stringent control of PCR cycles to minimize
945  amplification bias. The datasets were originally analyzed using DESeq2°? compute log: fold
946  changes between RNA and DNA libraries and assess statistical significance. Normalization was
947  applied relative to the distribution of negative controls, and enhancer activity was assigned to
948  elements with a log: fold change > 1 and an adjusted p-value < 0.01.

949 LentiMPRA

950 The LentiMPRA dataset was designed to characterize putative enhancers and promoters selected
951 from DNase | hypersensitive sites (DHSs) and tiling sequences outside DHS regions. These

952  sequences were chosen from loci including GATAL, MYC, HBEL1, LMO2, RBM38, HBA2, and
953 BCL11A, with additional positive and negative controls?®2°. The 200-bp elements were

954  synthesized via oligonucleotide synthesis.

955  LentiMPRA utilizes the pLG-Scel vector, which integrates candidate sequences into the genome
956  via lentiviral delivery, with barcodes located in the 5" UTR of the reporter gene3®. Unlike

957  TilingMPRA, both DNA and RNA libraries were collected from cells post-integration. To

958  distinguish biological duplicates from PCR duplicates, unique molecular identifiers (UMIs) were
959 included in the sequencing library before sequencing. The dataset was processed using

960 MPRAflow®*® computing log: fold changes per element across replicates. Normalization was
961  performed within each replicate, and the final log. fold change for each element was calculated
962  as the average across all replicates. Elements with log: fold changes exceeding the 95th

963  percentile of negative controls were classified as enhancers®.

964 ATAC-STARR-seq
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965 ATAC-STARR-seq integrates ATAC-seq (Assay for Transposase-Accessible Chromatin with
966  high-throughput sequencing) with STARR-seq to identify enhancers active in accessible

967  chromatin regions. By leveraging the open chromatin landscape, this approach facilitates the
968  functional validation of active enhancers.

969  The assay utilized the ORI-Thy1.1 vector in an episomal context, allowing enhancer activity to

970  be measured independently of chromatin context effects. DNA libraries were sequenced prior to
971 transfection, and UMIs were incorporated exclusively into RNA libraries. PCR duplicates were

972  removed from DNA libraries by collapsing fragments with identical genomic coordinates.

973  ATAC-STARR-seq data were analyzed using CSAW (ChIP-Seq Analysis with Sliding

974  Windows)>*%°, This method employs a genome-wide sliding window approach, quantifying
975  fragment overlaps and identifying differential activity between RNA and DNA libraries via the
976  quasi-likelihood framework in edgeR>#°¢. Enhancer activity was assigned to genomic regions
977  exhibiting transcriptional activity (log: fold change > 0) and statistically significant enrichment
978  (adjusted p-value < 0.05).

979  WHG-STARR-seq

980 WHG-STARR-seq was designed for genome-wide enhancer identification using randomly
981 fragmented DNA®. The DNA libraries were sequenced before transfection to establish baseline
982  representation.

983  The assay employed the hSTARR-seq_ORI vector. Unlike the targeted approaches of

984  LentiMPRA and TilingMPRA, WHG-STARR-seq screened fragmented genomic sequences

985  without predefined selection criteria. Data were processed using CRADLE?® (Correction of Read
986  Counts and Detection of Locally Enriched Regions), which corrects for sequence-based read
987  count biases and identifies significantly enriched regions based on base-pair-level read density.

988
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989  Figure 1. Overview of Experimental Designs and Assay Consistencies Across MPRAs and
990 STARR-seq Assays
991 (a) Schematic representation of the experimental workflows for four types of MPRAS and
992 STARR-seq assays analyzed in this study.
993  (b) Heatmap displaying the number of overlapping enhancer regions between assays and their
994  percentage relative to the total number of enhancer regions identified in each assay, based on the
995  >1-bp overlap criterion.
996  (c) Heatmap presenting the Jaccard Index for pairwise comparisons between assays using >1-bp
997  overlap criterion, quantifying overall similarity in enhancer identification.
998  (d) Schematic illustration of assayed coverage and tested coverage of reporter assays,
999  distinguishing the proportion of the genome initially assayed versus the regions effectively tested
1000 for enhancer activity.
1001
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1002  Figure 2. Evaluation of Data Quality Across MPRAs and STARR-seq Assays

1003  (a) Funnel plot showing the genome-wide coverage distribution of WHG-STARR-seq and

1004  ATAC-STARR-seq at varying read depths thresholds in DNA libraries.

1005 (b) Funnel plot illustrating the coverage distribution of accessible regions at different read depths
1006  thresholds in DNA libraries for ATAC-STARR-seq and LentiMPRA. Accessible regions are
1007  defined by ATAC-seq peaks from ATAC-STARR-seq DNA libraries and DNase-seq narrow
1008  peaks for LentiMPRA.

1009  (c) Bar plot presenting average Pearson correlation coefficients for log2-transformed DNA CPM
1010 and RNA CPM, and log2(RNA/DNA) ratios across assays.

1011  (d) Bar plot depicting average library recovery rates in DNA and RNA libraries across assays.
1012

1013
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1014  Figure 3. Enhancer Identification Using a Unified Pipeline

1015 (a) Schematic of the uniform enhancer call pipeline. The workflow begins with a raw count
1016  matrix as input, applies dataset-specific filters to exclude low-depth regions, and normalizes
1017  library size using TMM normalization. Regulatory activity is calculated as log2(RNA/DNA)
1018  values and Z-score analysis is performed to identify regions with significantly higher regulatory
1019 activity than negative control regions as enhancer regions in an orientation-independent manner.
1020 (b) Bar plot showing the assayed coverage, tested coverage in either orientation and tested
1021  coverage in both orientation for open chromatin regions characterized by ATAC-seq peaks
1022  derived from DNA libraries in ATAC-STARR-seq.

1023  (c) Bar plot summarizing genome-wide assayed coverage, tested coverage in either orientation
1024  and tested coverage in both orientation.

1025 (d) Meta-plots comparing the average DNase-seq and ATAC-seq signal profiles (1 kb from the
1026  center) for 2,000 enhancer regions randomly sampled from those identified in both orientations
1027  versus 2,000 regions tested in both orientations but active in only one orientation

1028 (e) Meta-plots comparing the average of H3K4me3 and H3K27ac histone modification profiles
1029 (1 kb from the center) for 2, 000 enhancer regions randomly sampled from those identified in
1030  both orientations versus 2,000 regions tested in both orientations but active in only one

1031  orientation.

1032  (f) Meta-plots comparing the average DNase-seq and ATAC-seq signal profile (£1 kb from the
1033  center) for 2,000 randomly sampled enhancer regions from laboratory-reported enhancer calls
1034  versus those identified using the uniform enhancer call pipeline.

1035 (g) Meta-plots comparing the average of H3K4me3 and H3K27ac histone profiles (1 kb from
1036 the center) for 2,000 randomly sampled enhancer regions from laboratory-reported enhancer
1037  calls versus those identified using the uniform enhancer call pipeline.

1038

1039
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1040  Figure 4. Enhanced Consistency in Cross-Assay Comparisons Using Uniformly Processed
1041  Enhancer Calls

1042  (a) Box plot showing the Jaccard Index for pairwise comparisons between assays, calculated
1043  using the minimal overlap criterion of 1-bp and the stricter criterion of >50% reciprocal overlap.
1044  Results are shown for both laboratory-reported and uniformly processed enhancer calls,

1045 illustrating the improved consistency achieved through uniform processing.

1046  (b,c) Heatmaps displaying the number of overlapping enhancer regions between assays under the
1047  >1-bp overlap criterion (b) and under the >50% reciprocal overlap criterion (c). Each cell shows
1048 the ratio of the number of enhancer regions in the row dataset that overlap with enhancer regions
1049 in the column dataset to the number of enhancer regions in the row dataset overlapping with
1050 tested regions in the column dataset. Diagonal cells display the total number of enhancer regions
1051 identified in each dataset.

1052  (d,e) Heatmaps displaying the number of overlapping enhancer regions between assays under the
1053  >50% reciprocal overlap criterion in proximal regions (d) and distal regions (e).

1054
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1055  Figure 5. Impact of Transcription Levels on Active Rates and Assay Consistencies

1056 (a) Bar plot illustrating the active rates of all tested regions in LentiMPRA, ATAC-STARR-seq,
1057 and WHG-STARR-seq, categorized by transcription levels (none, low, medium, and high)

1058  determined by GRO-cap signals.

1059 (b) Line plot depicting Jaccard Index values for pairwise comparisons between LentiMPRA,
1060 ATAC-STARR-seq, and WHG-STARR-seq across all tested regions with varying transcription
1061 levels, calculated using the >50% reciprocal overlap criterion.

1062  (c) Bar plot illustrating the active rate of transcribed and untranscribed regions with high-overlap
1063  with any types of cCREs or with high-overlap with dELS, pELS, and PLS or without any overlap
1064  with cCRE and PINTS elements.

1065 (d) Bar plot showing the active rate of high-overlap dELS, pELS, and PLS regions with different
1066 transcription levels (low, medium, high) determined by GRO-cap signals

1067
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1084  Extended Data Figure 1. Schematic Representation of Overlap Criteria

1085 (a) No overlap between regions A and B.

1086  (b) 1-bp overlap between regions A and B.

1087  (c) >50% reciprocal overlap between regions A and B, where both regions share at least 50% of
1088 their length with one another.

1089  (d) >80% reciprocal overlap between regions A and B, where both regions share at least 80% of
1090 their length with one another.
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Extended Data Figure 2. Assay Consistency in Cross-Assay Comparisons Using Original
Laboratory-Reported Enhancer Calls

(a) Heatmaps showing the number of overlapping enhancer regions between assays under the
>50% reciprocal overlap criterion. Each cell displays the number of enhancer regions in the row
dataset overlapping with those in the column dataset, with diagonal cells indicating the total
number of enhancer regions identified in each dataset.

(b) Heatmap presenting the Jaccard Index of each pairwise comparison between assays using the
>50% reciprocal overlap criterion.
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1101  Extended Data Figure 3. Schematic Representation of Binning Strategies in Genome-wide
1102 STARR-seq Datasets

1103 (@) lllustration of the genomic binning approach applied to ATAC-STARR-seq and WHG-

1104  STARR-seq datasets. Original STARR-seq fragments are assigned to 100-bp genomic bins using
1105  a10-bp sliding window, where only fragments fully covering the genomic bin are counted.

1106


https://doi.org/10.1101/2025.03.25.645321

bioRxiv preprint doi: https://doi.org/10.1101/2025.03.25.645321; this version posted March 27, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1107  Extended Data Figure 4. Assay Consistencies for Distal and Proximal Regions Tested

1108  Across MPRA/STARR-seq Assays

1109 (@) Box plot illustrating the absolute difference in overlap fraction for each pairwise comparison
1110  between assays, distinguishing consistently active regions from those with inconsistent calls. The
1111  absolute difference in overlap fraction quantifies sequence similarity based on relative overlap
1112  proportions, calculated as the number of overlapping base pairs divided by the total region length
1113 inassay A. The absolute difference between these values reflects variations in sequence length,
1114  where lower values indicate greater sequence similarity, while higher values suggest larger

1115  differences in sequence composition.

1116 (b, c) Heatmaps displaying the number of overlapping tested regions between assays under the
1117  >1-bp overlap criterion in proximal regions (b) and in distal regions (c). Each cell shows the ratio
1118  of the number of proximal enhancer regions in the row dataset that overlap with proximal

1119  enhancer regions in the column dataset to the number of proximal enhancer regions in the row
1120  dataset overlapping with proximal tested regions in the column dataset. Diagonal cells display
1121  the total number of proximal enhancer regions identified in each dataset.

1122
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1123  Extended Data Figure 5. Functional Validation of cCREs and GRO-cap Elements Across
1124  MPRA/STARR-seq Assays

1125 (@) Stacked bar plot displaying the coverage of dELS, pELS and PLS with different levels of
1126  overlap across LentiMPRA, ATAC-STARR-seq and WHG-STARR-seq. Overlap categories
1127  include >80% reciprocal overlap, 50%-80% reciprocal overlap, and remaining overlap.

1128 (b) Bar plot illustrating the active rates of all types of cCREs in LentiMPRA, ATAC-STARR-
1129  seq and WHG-STARR-seq, stratified by overlap extent.

1130  (c) Bar plot showing the active rates of all regions not overlapping with any cCREs in

1131  LentiMPRA, ATAC-STARR-seq and WHG-STARR-seq.

1132  (d) Stacked bar plot displaying the coverage of divergent, unidirectional, and convergent

1133  elements identified by GRO-cap, categorized by their overlap extent across LentiMPRA, ATAC-
1134  STARR-seq and WHG-STARR-seq.

1135 (e) Bar plot showing the active rates of all types of GRO-cap elements in LentiMPRA, ATAC-
1136 STARR-seq and WHG-STARR-seq, stratified by overlap extent.

1137  (f) Bar plot showing the active rates of regions that do not overlap with GRO-cap elements,
1138  stratified by the presence or absence of transcription as measured by GRO-cap signals.

1139
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Extended Data Figure 6. Influence of Transcription Levels on Cross-Assay Comparisons
on Enhancer Identification

(a, b, c,d) Heatmaps showing the number of commonly active tested regions between assays
under the >50% reciprocal overlap criterion with none (a), low (b), medium (c) and high (d)
transcription levels, as defined by GRO-cap signal. Each cell represents the ratio of the number
of enhancer regions in the row dataset that overlap with enhancer regions in the column dataset
to the number of enhancer regions in the row dataset overlapping with tested regions in the
column dataset. Diagonal cells display the total number of enhancer regions identified in each
dataset.
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Extended Data Figure 6.
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Supplementary Table 1.

TilingMPRA LentiMPRA ATAC-STARR-seq WHG-STARR-seq
Accession ENCSR394HXI ENCSR917SFD ENCSR363XER ENCSR382BVV ENCSR312UQM ENCSR661FOW
Fragment Size 200-bp 200-bp 200-bp 200-bp 150-bp - 800-bp 200-bp - 800-bp
(1) Protein coding
gene promoters
centered on TSS; (2)
o Putative enhancers
Tiles in 5-bp sliding |, . - . Tlles n 100-bp centered on non- Tn5-fragmented .
. Tiles in 50-bp sliding [sliding window along Sonicated random
. . window along FEN1, | . promoter DNase-seq | random fragments
Targeted Genomic Regions window along MYC, LMO2, HBET1, ) . . fragments genome-
FADS1, FADS2, peaks; (3) Tiles not enriched in .
GATA1 RBM38, HBA2, . . ) . wide
FADS3 overlapping with accessible regions
BCL11A
DNase peaks around
GATA1, MYC, HBE1,
LMO2, RBM38,
HBA2, and BCL11A
# DNA Replicates 4 5 3 6 1
# RNA Replicates 4 5 4 3 4 3
1,136,262,454
# Assayed 42,714 95,990 91,110 232,542 (443 451 583) 826,518,557
Original Fragments # Assayed in 567,725,494
of Interests Forward Orientation 21,335 95,990 91,110 116,275 (221,240,073) 413,361,239
# Assayed in 568,536,960
Reverse Orientation 21,379 116,267 (222,211,510) 413,157,318
. 2,816,174,570
# Base Pair Covered 111,020 3,912,714 9,147,135 23,322,354 (198,059,928) 2,814,258,311
# Positive Controls - 289 290 50 - -
Control Fragments -
# Negative Controls 150 2,871 1,874 444 - -
557,773,387
# Assayed - - - - (44,507,595) 549,082,586
N # Assayed in 280,006,767
Genomic Bins Forward Orientation (22,254,224) 276,158,685
# Assayed in 277,766,620
Reverse Orientation ) ) ) ) (22,253,371) 282,923,901
% Genome Assayed - - - - 96.68% (100.00%) 96.61%
# Enhancers (Lab Reported) 13,036 17,877 14,996 87,185 58,110 38,671
# Enhancers (Merge Overlapping Regions) 121 4,419 8,379 56,840 46,906 38,671
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Supplementary Table 2.

TilingMPRA LentiMPRA ATAC-STARR-seq WHG-STARR-seq
Accession ENCSR394HXI ENCSR917SFD ENCSR363XER ENCSR382BVV ENCSR312UQM ENCSR661FOW
) # Tested 41,937 94,179 90,329 229,290 26,381,426 250,455,751
Fragments/Genomic e  Both
Bins of interests ested in Bot 20,611 - - 113,673 10,473,380 109,842,058
Orientations
Source Originally assayed Originally assayed Originally assayed Originally assayed | Selected from exons | Selected from exons
Negative Controls
# Tested 148 1,828 1,862 439 484,885 2,864,061
Z-score Dependent logFC Threshold 2.45 1.92 2.02 0.79 1.60 1.10
# Either Orientation 136 2,117 3,761 25,635 25,891 79,734
Enhancer Regions i i
9 # Orientation 57 - - 16,603 11,679 25,505

Independent
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Supplementary Table

Total LentiMPRA ATAC-STARR-seq WHG-STARR-seq
No Overlap 18,002 (50.73%) No Overlap 17,837 (50.26%) No Overlap 20,472 (57.69%)
Low 1,403 Low 12,065 Low 10,783
(3.95%) (34.00%) (30.38%)
dELS 35,488 17,486 13,727 17,651 4,788 15,016 3,536
Overlap 49.27%) Moderate (38.68%) Overlap 49.75%) Moderate (13.49%) Overlap 42.31%) Moderate (9.96%)
. 2,356 . 798 . 697
High (6.64%) High (2.25%) High (1.96%)
No Overlap 38,673 (92.49%) No Overlap 33,509 (80.14%) No Overlap 30,671 (73.35%)
Low 480 Low 6,210 Low 8,427
(1.15%) (14.85%) (20.15%)
PELS 41,813 3,140 2,231 8,304 1,864 11,142 2,409
Overlap (7.51%) Moderate (5.34%) Overlap (19.88%) Moderate (4.46%) Overlap 26.65%) Moderate (5.76%)
. 429 . 230 " 306
High (1.03%) High (0.55%) High 0.73%)
No Overlap 11,875 (59.25%) No Overlap 9,673 (48.27%) No Overlap 9,459 (47.20%)
Low 1,931 Low 9,150 Low 7,095
(9.64%) (45.66%) (35.40%)
PLS 20,041 8,166 5,862 10,368 1,041 10,582 2,869
Overlap (40.75%) Moderate (29.25%) Overlap (51.73%) Moderate (5.19%) Overlap (52.80%) Moderate (14.32%)
. 373 . 177 . 618
High (1.86%) High (0.88%) High (3.08%)
No Overlap 4,420 (75.41%) No Overlap 4,083 (69.66%) No Overlap 4,467 (76.22%)
Low 142 Low 1,498 Low 1,175
(2.42%) (25.56%) (20.05%)
CA-H3K4me3 5,861 1,441 1,119 1,778 262 1,394 182
Overlap (24.59%) Moderate (19.09%) Overlap (30.34%) Moderate 4.47%) Overlap (23.78%) Moderate 3.11%)
. 180 . 18 . 37
High (3.07%) High (0.31%) High (0.63%)
No Overlap 8,302 (29.37%) No Overlap 8,961 (31.70%) No Overlap 16,340 (57.80%)
Low 839 Low 13,823 Low 9,817
(2.97%) (48.89%) (34.72%)
CA-CTCF 28,271 19,969 16,289 19,310 5,300 11,931 1,864
Overlap (70.63%) Moderate (57.62%) Overlap (68.30%) Moderate (18.75%) Overlap (42.40%) Moderate (6.59%)
. 2,841 . 187 . 250
High (10.05%) High (0.66%) High (0.88%)
No Overlap 19,526 (50.25%) No Overlap 16,866 (43.40%) No Overlap 19,630 (50.52%)
Low 1,389 Low 14,107 Low 14,539
(3.57%) (36.30%) (37.41%)
CA-TF 38,859 19,333 15,318 21,993 7,222 19,229 4,020
Overlap 49.75%) Moderate (39.42%) Overlap (56.60%) Moderate (18.59%) Overlap (49.48%) Moderate (10.35%)
. 2,626 . 664 . 670
High (6.76%) High (1.71%) High (1.72%)
No Overlap 2,564 (86.68%) No Overlap 2,092 (70.72%) No Overlap 2,111 (71.37%)
Low s Low 657 Low 668
(2.54%) (22.21%) (22.58%)
CA-only 2,958 394 216 866 189 847 157
Overlap (13.32%) Moderate (7.30%) Overlap (29.28%) Moderate (6.39%) Overlap (28.63%) Moderate (5.31%)
. 103 . 20 . 22
High (3.48%) High (0.68%) High (0.74%)
No Overlap 2,145,942 (98.64%) No Overlap 2,033,636 (93.48%) No Overlap 1,367,487 (62.86%)
Low 7,727 Low 95,321 Low 632,056
(0.36%) (4.38%) (29.05%)
Low-DNase 2,175,563 29,621 18,914 141,927 41,922 808,076 153,583
Overlap (1.36%) Moderate 0.87%) Overlap (6.52%) Moderate (1.93%) Overlap (37.14%) Moderate (7.06%)
. 2,980 . 4,684 . 22,437
High 0.14%) High 0.22%) High (1.03%)
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Supplementary Table 4.

Total LentiMPRA ATAC-STARR-seq WHG-STARR-seq
No Overlap 28,535 (55.67%) No Overlap 21,172 (41.30%) No Overlap 17,186 (33.53%)
5,856 24,223 26,536
L 3 ,
Dnergent ow (11.42%) Low (47.25%) Low (51.77%)
51,261 22,726 12,129 30,089 4,995 34,075 6,2
Elements Overl ’ Moderat J ) ) ) ,219
verlap (44.33%) oderate (23.66%) Overlap (58.70%) Moderate (9.74%) Overlap (66.47%) Moderate (12.13%)
. 4,741 . 871 . 1,320
High (9.25%) High (1.70%) High 2.58%)
No Overlap 4,989 (71.47%) No Overlap 3,338 (47.82%) No Overlap 1,614 (23.12%)
1,984 2,637 4,450
o Low (28.42%) Low (87.77%) Low (63.74%)
Unidirectional 6.981 1992 7 3643
Elements ' Overla ' Moderat | ' 923 5367 803
P (28.53%) oderate (0.10%) Overlap (52.18%) Moderate (13.22%) Overlap (76.88%) Moderate (11.50%)
. 1 . 83 114
High i
ig (0.01%) High (1.19%) High (1.63%)
No Overlap 3,231 (79.88%) No Overlap 3,134 (77.48%) No Overlap 2,856 (70.61%)
177 796 997
Low L«
Convergent (4.38%) o (19.68%) Low (24.65%)
4,045 814 563 911 101 1,189 1
Elements Overla Moderat: | ' 56
verlap (20.12%) oderate (13.92%) Overlap (22.52%) Moderate (2.50%) Overlap (29.39%) Moderate (3.86%)
. 74 . 14 . 36
High
'9 (1.83%) High (0.35%) High (0.89%)
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