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Abstract 16 

Massively parallel reporter assays (MPRAs) and self-transcribing active regulatory region 17 

sequencing (STARR-seq) have revolutionized enhancer characterization by enabling high-18 

throughput functional assessment of regulatory sequences. Here, we systematically evaluated six 19 

MPRA and STARR-seq datasets generated in the human K562 cell line and found substantial 20 

inconsistencies in enhancer calls from different labs that are  primarily due to technical variations 21 

in data processing and experimental workflows. To address these variations, we implemented a 22 

uniform enhancer call pipeline, which significantly improved cross-assay agreement. While 23 

increasing sequence overlap thresholds enhanced concordance in STARR-seq assays, cross-assay 24 

consistency in LentiMPRA was strongly influenced by assay-specific factors. Notably, our 25 

results show that LentiMPRA exhibits a strong preference for promoter-associated sequences 26 

rather than enhancers. Functional validation using candidate cis-regulatory elements (cCREs) 27 

confirmed that epigenomic features such as chromatin accessibility and histone modifications are 28 

strong predictors of enhancer activity. Importantly, our study validated transcription as a critical 29 

hallmark of active enhancers, demonstrating that highly transcribed regions exhibit significantly 30 

higher active rates across assays. Furthermore, we show that transcription enhances the 31 

predictive power of epigenomic features, enabling more accurate and refined enhancer 32 

annotation. Our study provides a comprehensive framework for integrating different enhancer 33 

datasets and underscores the importance of accounting for assay-specific biases when 34 

interpreting enhancer activity. These findings refine enhancer identification using massively 35 

parallel reporter assays and improve the functional annotation of the human genome.  36 
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Introduction 37 

Enhancers are key cis-regulatory DNA elements that drive transcriptional activity and play a 38 

pivotal role in gene regulation. Their influence extends beyond individual gene expression, 39 

shaping broader regulatory networks that control cell identity and function. Variants within 40 

enhancers have been strongly implicated in complex traits and diseases, emphasizing the 41 

importance of systematically identifying and characterizing enhancers to elucidate their 42 

contributions to gene expression and disease mechanisms1–3.  43 

Traditional reporter gene assays have long been used to characterize enhancer activity by 44 

positioning candidate sequences upstream or downstream of a minimal promoter linked to a 45 

reporter gene4–6. However, enhancers present a much greater challenge for functional 46 

characterization than the ~25,000 protein-coding genes in the human genome due to their vast 47 

numbers, sequence variability, and highly context-dependent activity7,8 While these traditional 48 

reporter gene assays remain functional, the advent of high-throughput sequencing technologies 49 

has revolutionized enhancer studies, enabling massively parallel reporter assays (MPRAs) and 50 

self-transcribing active regulatory region sequencing (STARR-seq) to profile the regulatory 51 

activity of millions of sequences simultaneously9–11. These innovations have dramatically 52 

expanded our ability to interrogate enhancers on a genome-wide scale, addressing the limitations 53 

of conventional low-throughput approaches. 54 

MPRAs, which utilize synthesized oligonucleotide libraries, position candidate sequences 55 

upstream of a minimal promoter and tag them with unique barcodes in the 3′ or 5′ UTR of the 56 

reporter gene. Regulatory activity is inferred by sequencing RNA transcripts associated with 57 

these barcodes9,10. Despite their robustness, MPRAs face challenges in testing long DNA 58 

sequences and complex libraries due to synthesis and cost limitations6,12. Additionally, placing 59 

candidate sequences upstream of a promoter may inadvertently capture promoter rather than 60 

enhancer activity, confounding the interpretation of regulatory function13.  61 

STARR-seq overcomes some of these constraints by placing candidate sequences within the 3′ 62 

UTR of a reporter gene, allowing them to self-transcribe and directly quantify enhancer activity 63 

based on transcript abundance11. Unlike MPRAs, STARR-seq does not rely on synthesis but 64 

instead uses fragmented genomic DNA, typically obtained through sonication15 or nuclease 65 

digestion16, enabling genome-wide enhancer screening without sequence-length restrictions17. 66 

However, STARR-seq also has inherent challenges. The placement of candidate sequences in the 67 

3’UTR can affect mRNA stability, and thereby introduce orientation biases in enhancer 68 

quantification18. Furthermore, genome-wide STARR-seq requires highly complex libraries, 69 

necessitating deep sequencing and high transfection efficiency to achieve sufficient coverage18–70 
20. Since random fragmentation rarely generates multiple identical copies of the same fragment, 71 

most fragments produce only a single readout. As a result, fragment-level analysis is not feasible, 72 

requiring the use of peak-calling algorithm to identify enhancer regions19,20. However, these 73 

approaches lack the resolution to precisely delineate enhancer boundaries. 74 

In recent years, several MPRA and STARR-seq variants have been developed to facilitate the 75 

genome-wide functional characterization of human enhancers and their sequence variants14,15,21–76 
25. Among these efforts, the ENCODE Consortium has played a pivotal role by implementing 77 
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large-scale, high-throughput reporter assays within and across multiple cell lines to 78 

systematically map enhancer activity across the genome26–28. These efforts have generated 79 

extensive datasets that provide a valuable resource for dissecting the regulatory architecture of 80 

the genome.  81 

However, several critical questions must be addressed to fully leverage these resources and 82 

refine the application of massively parallel reporter assays for deeper functional dissection of 83 

enhancer sequences. One key uncertainty is the extent to which the human genome has been 84 

functionally characterized. While STARR-seq has the theoretical capacity to screen enhancers 85 

genome-wide, practical limitations such as sequencing depth can significantly impact 86 

coverage. Additionally, the consistency of enhancer identification across different experimental 87 

platforms remains unclear. A recent study systematically compared nine different MPRA and 88 

STARR-seq assay designs using a fixed set of 2,440 sequences, demonstrating how variations in 89 

experimental design influence enhancer activity measurements29.While this study provided 90 

valuable insights, it was conducted under controlled conditions rather than real-world 91 

applications, where assay-specific factors—such as library design, sequencing depth, and data-92 

processing pipelines—may introduce systematic biases. Furthermore, the extent to which 93 

reporter assays yield consistent regulatory activity profiles and how functionally characterized 94 

enhancers align with annotations derived from epigenomic features—such as histone 95 

modifications, chromatin accessibility, and transcriptional activity—remain largely unexplored.  96 

To fully integrate these existing large-scale reporter assay datasets for enhancer sequence and 97 

functional studies and optimize the future application of massively parallel reporter assays, a 98 

systematic evaluation of their genome-wide coverage, cross-assay consistency, and concordance 99 

with existing enhancer annotations is needed. Without such an assessment, leveraging these 100 

datasets for meaningful biological insights remains challenging, limiting our ability to accurately 101 

interpret regulatory landscapes and develop a unified framework for enhancer characterization. 102 

In this study, we systematically evaluated a total of six STARR-seq and MPRA datasets 103 

representing four major MPRA and STARR-seq assay types obtained in the human K562 cell 104 

line. Initial comparisons of lab-reported enhancer calls revealed limited overlap, prompting a 105 

deeper investigation into the factors contributing to cross-assay inconsistencies. We reprocessed 106 

all datasets using a unified analytical framework, assessing dataset quality while implementing a 107 

standardized enhancer identification pipeline and improving cross-assay comparisons by 108 

recording both active and inactive regions. Using this harmonized approach, we found 109 

significantly improved enhancer call consistency across assays, especially in cases testing similar 110 

sequence composition. Furthermore, we assessed the functional relevance of enhancer candidates 111 

defined by enhancer RNA (eRNA) transcription start sites (TSSs) and defined by epigenomic 112 

profiles from the ENCODE registry of candidate cis-regulatory elements (cCREs), finding 113 

existing enhancer annotations are concordant with massively parallel reporter assay data. We 114 

also demonstrated transcription emerged as a critical mark of enhancer function, improving the 115 

predictive power of epigenomic features and enhancing the enhancer annotation. Our study 116 

provides the first comprehensive assessment of diverse massively parallel reporter assay datasets, 117 

offering a framework for integrating these datasets to enhance biological insights and refine 118 

functional characterization strategies for future applications.  119 
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Results 120 

Assessment of Cross-Assay Consistency in Enhancer Identification 121 

We analyzed six distinct STARR-seq and MPRA datasets produced by laboratories within the 122 

ENCODE Consortium’s Functional Characterization Center, comprising three TilingMPRA 123 

datasets, a LentiMPRA dataset, an ATAC-STARR-seq, and a WHG-STARR-seq dataset26–28. 124 

Although all assays were performed in the human K562 cell line, they differed in experimental 125 

objectives, design strategies, and data processing methods. An overview of these experimental 126 

designs is illustrated in Fig. 1a, with detailed dataset descriptions provided in the Supplementary 127 

Notes.  128 

To evaluate the consistency of enhancer identification, we compared enhancer calls reported in 129 

each dataset. Data were retrieved from either the ENCODE portal26–28 or original publications 130 

and processed according to each laboratory’s guidelines. The original number of lab-reported 131 

enhancer regions is summarized in Supplementary Table 1. To standardize comparisons, 132 

overlapping enhancer calls within each dataset were merged into unique regions, resulting in 133 

12,919 enhancer regions across three TilingMPRA datasets, 56,840 regions from LentiMPRA, 134 

46,906 and 38,671 regions from ATAC-STARR-seq and WHG-STARR-seq, respectively. 135 

We compared enhancer calls across assays by measuring the number of overlapping enhancer 136 

regions in each pairwise comparison, applying a minimal overlap threshold of 1 base pair (bp) to 137 

ensure inclusion of partially overlapping regions (Extended Data Fig. 1b).The highest overlap 138 

was observed between LentiMPRA and ATAC-STARR-seq, where approximately 40% (22,780 139 

out of 56,840) of LentiMPRA regions overlapped with 44% (20,692 out of 46,906) of ATAC-140 

STARR-seq regions. ATAC-STARR-seq and WHG-STARR-seq showed the second-highest 141 

overlap, with around 11% (5,359 out of 46,906) of ATAC-STARR-seq regions overlapping with 142 

16% (6,255 out of 38,671) of WHG-STARR-seq regions. Comparisons involving LentiMPRA 143 

and WHG-STARR-seq, as well as TilingMPRA with other assays, exhibited lower overlap, 144 

reflecting differences in enhancer calls across these datasets (Fig. 1b). 145 

To further quantify similarity across assays, we calculated the Jaccard Index (JI) for each 146 

pairwise comparison. Overall, enhancer identification exhibited low consistency, with most JI 147 

values approaching zero (Fig. 1c). The highest JI was observed between LentiMPRA and 148 

ATAC-STARR-seq (0.28), followed by ATAC-STARR-seq and WHG-STARR-seq (0.08). 149 

Applying stricter overlap criteria further reduced similarities (Extended Data Fig. 2a,b) , 150 

highlighting the substantial variability in enhancer identification across different assays. 151 

Investigating Factors Contributing to Cross-Assay Inconsistencies 152 

The discrepancies in enhancer activity measurements observed across STARR-seq and MPRA 153 

assays likely stem from a combination of technical and biological factors. Technical factors 154 

include variations in experimental protocols and data analysis methodologies, whereas biological 155 

factors encompass aspects such as chromatin context, enhancer-promoter compatibility, 156 

sequence positioning, and the inherent properties of the tested sequences. 157 
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Chromatin context can affect enhancer activity measurements as episomal assays may not 158 

replicate the native chromatin environment, leading to differences in enhancer activities 159 

compared to integrated reporter assays, where sequences are chromatinized23. Minimal promoter 160 

choice in the reporter construct is another source of variability, as different minimal promoters 161 

exhibit varying levels of basal transcription29. Moreover, certain enhancers respond preferentially 162 

to specific promoters, adding further complexity to cross-assay consistency30–34. 163 

The positioning of candidate sequences also influences reporter assay outcomes, particularly 164 

when characterizing enhancer functions. In many MPRAs, candidate enhancer sequences are 165 

placed upstream of a minimal promoter, which may inadvertently measure promoter activity 166 

instead of enhancer activity, if the sequence contains promoter-like features13. The specific 167 

sequences tested also play a substantial role in determining assay outcomes, as each sequence 168 

may exhibit distinct regulatory properties and context-dependent behavior. For instance, 169 

appending flanking regions to a tested sequence can alter enhancer activity, leading to 170 

differences in activity measurements29.  171 

Despite the potential impact of these biological factors, a recent study demonstrated that good 172 

correlations in enhancer activities can be achieved across different experimental designs in 173 

reporter assays—including those used in our study—when a common set of sequences is tested 174 

under standardized protocols and analyzed with a unified data processing pipeline29. This finding 175 

suggests that while biological factors do contribute to variability, they are unlikely to be the 176 

primary drivers of the observed inconsistencies. Instead, technical factors, particularly variations 177 

in data analysis pipelines, are likely more significant contributors.  178 

A primary factor contributing to the observed cross-assay inconsistencies is the lack of 179 

comprehensive reporting of all tested regions. While targeted assays like TilingMPRA and 180 

LentiMPRA typically provide quantification data for all tested elements, including both active 181 

and inactive elements, genome-wide STARR-seq datasets—such as ATAC-STARR-seq and 182 

WHG-STARR-seq—commonly report only the final set of active peak regions. This limited 183 

reporting omits regions that were tested but did not reach statistical significance. Without 184 

comprehensive information on all regions that proceed through statistical testing, it becomes 185 

difficult to determine the true extent of the genome that was functionally evaluated. 186 

Consequently, this limits accurate assessments of genome-wide assay coverage and complicates 187 

rigorous cross-assay comparisons. While many current genome-wide STARR-seq analyses 188 

assess coverage based on all assayed fragments (Fig. 1d), true assay coverage should reflect only 189 

those regions that passed quality filters and underwent statistical testing for enhancer activity, 190 

excluding low-coverage regions (Fig. 1d). Additionally, meaningful pairwise comparisons 191 

between assays require focusing on regions that were commonly tested across both assays. By 192 

reporting only active regions, current comparisons may overestimate inconsistencies, as not all 193 

active regions in one assay were necessarily tested in the other. Comprehensive reporting of all 194 

tested regions would provide a clearer view of assay coverage and may help reduce the observed 195 

inconsistencies, enabling more accurate cross-assay comparisons. 196 

Another important factor contributing to cross-assay inconsistencies is the resolution of enhancer 197 

identification, which varies widely between assays and significantly impacts comparisons. High-198 

resolution assays like TilingMPRA and LentiMPRA use fragment-level analysis to define 199 
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precise enhancer boundaries, while genome-wide STARR-seq typically relies on sliding window 200 

peak-calling, generally offering lower resolution. In genome-wide STARR-seq, resolution is 201 

heavily influenced by genomic bin size and step size, as these parameters determine the size of 202 

the final peak regions. Additionally, methods for calculating read depth in each genomic bin 203 

further affect the results. For instance, STARRPeaker19, a peak-calling algorithm optimized for 204 

genome-wide STARR-seq, has demonstrated that using fragment read depth enables more 205 

precise identification of peak summits or centers, aligning with findings that sequence context 206 

impacts reporter assay outcomes. Thus, incorporating original fragment boundaries in read depth 207 

calculations is essential for consistent and accurate enhancer identification. While some 208 

differences in resolution across reporter assays are inevitable, standardizing genomic bin size and 209 

step size, and counting only fragments that fully cover each bin into its read depth in genome-210 

wide STARR-seq, should improve cross-assay consistency assessments. 211 

Another factor contributing to cross-assay inconsistencies is orientation bias in enhancer activity 212 

measurements, particularly in STARR-seq assays18. Although enhancers are generally 213 

considered orientation-independent4, some assays do not adequately account for orientation in 214 

experimental design or data analysis, potentially contributing to observed inconsistencies. For 215 

example, TilingMPRA assays tested sequences in only one orientation. In ATAC-STARR-seq 216 

and WHG-STARR-seq, although DNA fragments were derived from both orientations, the 217 

original analysis pipelines did not separately calculate read depth for genomic bins by 218 

orientation. This lack of distinction may have allowed signals from non-overlapping sequences 219 

to confound the results, potentially leading to the misclassification of orientation-specific 220 

elements as enhancers. Likewise, in LentiMPRA, sequences were tested in both orientations but 221 

were classified as enhancers if they were active in either orientation. Without considering 222 

activity in both orientations as part of the enhancer-calling criteria, assays may misclassify 223 

enhancer regions, complicating cross-assay comparisons. To address this issue, it is essential to 224 

test sequences in both orientations and require consistent activity in both orientations as a 225 

criterion for enhancer identification. This strategy would improve the accuracy and reliability of 226 

enhancer identification and minimize orientation-related biases. 227 

Variations in in-house data processing pipelines may also contribute to the observed 228 

inconsistencies across assays. Each pipeline may use distinct probability distributions, bias 229 

correction methods, and statistical tests, all of which can affect the results. Additionally, 230 

pipelines often apply arbitrary log2 fold change thresholds to define active regions, but these 231 

thresholds can vary significantly. Given the differences in minimal promoters across assays, 232 

normalizing enhancer activity relative to each promoter’s basal transcription level is essential for 233 

consistent enhancer identification. Studies suggest that evaluating enhancer activity relative to 234 

promoter-specific basal transcription yields more comparable results35,36. To improve cross-assay 235 

evaluations, implementing a unified approach to process and assess enhancer activity of all 236 

datasets is necessary. 237 

Unified Processing of Reporter Assay Datasets: Initial Data Quality Check 238 

To begin our unified processing of all datasets, we first conducted a comprehensive quality 239 

assessment of the reporter assay datasets. In addition to the biological and technical factors 240 
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discussed previously, the initial quality of these datasets directly impacts assay consistency and 241 

reliability.  242 

For TilingMPRA, LentiMPRA, count data were readily available through the ENCODE portal26–243 
28, or were re-processed with guidance from the original authors35. For ATAC-STARR-seq and 244 

WHG-STARR-seq datasets, we applied a unified genomic binning approach, creating 100-bp 245 

genomic bins with a 10-bp step size in both forward and reverse orientations (Extended Data Fig. 246 

3a). Only fragments that fully covered each genomic bin were counted, allowing for orientation-247 

independent enhancer identification and a more accurate assessment of genome-wide coverage 248 

of tested regions. 249 

We assessed genome-wide coverage for ATAC-STARR-seq and WHG-STARR-seq datasets. 250 

Our analysis revealed extensive library complexities of these two datasets, with over 96% of the 251 

human genome assayed after processing using the genomic binning approach. However, detailed 252 

evaluation identified a notable subset of genomic bins with low read depths in DNA libraries 253 

(<10; Methods) (Fig. 2a). This finding raises critical concerns about data quality, likely reflecting 254 

limitations in sequencing depth and transfection efficiency. Such limitations suggest that the 255 

reported genome-wide coverage of these assays may significantly overstate the regions 256 

effectively analyzed, as low-read-depth regions are typically excluded from downstream 257 

analyses, thereby reducing the tested coverage of these datasets. Additionally, we evaluated the 258 

coverage of accessible regions in both ATAC-STARR-seq and LentiMPRA datasets, given that 259 

their assayed fragments were either designed to be enriched in or selected from these regions. 260 

Both datasets demonstrated the ability to capture a substantial proportion of accessible regions 261 

with high read depths (Fig. 2b). Specifically, ATAC-STARR-seq achieved almost 100% of 262 

coverage of accessible regions characterized by ATAC-seq peaks, while LentiMPRA 263 

successfully covered 44% of DNase hypersensitive sites (DHSs) at higher read-depth threshold 264 

(≥10) in DNA libraries.  265 

To assess reproducibility between replicates, we calculated Pearson correlations (ρ) for log-266 

transformed counts per million (logCPM) of DNA and RNA counts, as well as log2(RNA/DNA) 267 

ratios, as these ratios represent the primary measurement of enhancer activity in downstream 268 

analyses. Overall, TilingMPRA and LentiMPRA demonstrated strong replicate correlations, 269 

indicating high reproducibility across libraries (Fig. 2c). Specifically, LentiMPRA showed robust 270 

correlations for both logCPM of DNA and RNA counts (0.97<ρ<0.99) and log2(RNA/DNA) 271 

ratios (0.72<ρ<0.80). Among the TilingMPRA datasets, ENCSR917SFD and ENCSR363XER 272 

displayed consistently high correlations (0.96<ρ<0.99 for logCPM, 0.87<ρ<0.90 for 273 

log2(RNA/DNA)), while ENCSR394HXI had moderately lower values (0.62<ρ<0.89 for 274 

logCPM, 0.47<ρ<0.58 for log2(RNA/DNA)), suggesting some variability within this dataset. 275 

In contrast, ATAC-STARR-seq and WHG-STARR-seq demonstrated considerably lower 276 

fragment-level reproducibility (Fig. 2c). ATAC-STARR-seq showed weak agreement between 277 

replicates (0.001<ρ<0.26 for logCPM, 0.12<ρ<0.22 for log2(RNA/DNA)), while WHG-STARR-278 

seq exhibited even greater variability, including negative RNA correlations (Fig. 2c). 279 

Aggregating fragments into genomic bins markedly improved replicate reproducibility for DNA 280 

and RNA counts and log2(RNA/DNA) ratios in the ATAC-STARR-seq dataset and RNA counts 281 

in WHG-STARR-seq dataset (Fig. 2c). Despite these improvements, the correlations for 282 
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log2(RNA/DNA) ratios remained low in both datasets (0.18<ρ<0.37 for ATAC-STARR-seq, 283 

0.42<ρ<0.47 for WHG-STARR-seq. Further restricting analysis to accessible genomic bins in 284 

ATAC-STARR-seq provided marginal improvements but did not reach the high reproducibility 285 

observed in MPRA datasets, highlighting persistent variability in genome-wide STARR-seq 286 

measurements. 287 

We also evaluated library recovery rates by calculating the proportion of fragments or genomic 288 

bins with at least one read in each library. TilingMPRA and LentiMPRA had high recovery rates 289 

(89%-100%), whereas ATAC-STARR-seq exhibited an average library recovery rate below 40% 290 

in DNA libraries and even lower in RNA libraries (Fig. 2d). These findings suggest that many 291 

fragments were not consistently detected in ATAC-STARR-seq, possibly due to low sequencing 292 

depth or low transfection efficiency. Further analysis of fragments overlapping ATAC-seq peaks 293 

showed similar discrepancies in recovery rates between DNA and RNA libraries, pointing to 294 

limitations in data quality (Fig. 2d). WHG-STARR-seq also had low recovery rates at the 295 

fragment level (18%-38%), but most genomic bins were represented in both DNA and RNA 296 

libraries (93%-98%) (Fig. 2d), indicating that issues with sequencing depth and transfection 297 

efficiency were not as severe.  298 

These results revealed substantial variability in data quality across different datasets. While 299 

MPRA assays exhibited consistently high data quality and reproducibility, genome-wide 300 

STARR-seq datasets were more susceptible to limitations such as insufficient sequencing depth 301 

and potential low transfection efficiency. These factors likely contributed to higher variability 302 

and reduced reliability in enhancer identification, and this issue can remain significant even 303 

when genomic binning is applied. Our findings highlight the necessity of applying stringent 304 

filtering criteria to exclude low-read-depth regions in the downstream analysis while also 305 

ensuring that the final reported tested regions accurately represent sequences with sufficient read 306 

depth, rather than using all assayed regions as a proxy for measuring tested region coverage.  307 

Uniform Processing of Reporter Assay Datasets: Enhancer Call Pipeline 308 

While future studies should further address experimental challenges, to address the role of data 309 

processing in contributing to the observed inconsistencies, we implemented a unified enhancer 310 

call pipeline and applied it consistently across all datasets. The workflow is illustrated in Fig. 3a, 311 

with detailed methodology provided in the Methods section.  312 

The pipeline begins with a raw count matrix as input and applies dataset-specific filters to 313 

remove fragments or genomic bins with low read depth. We then adapted the Trimmed Mean of 314 

M-values (TMM) normalization37 and linear model approach from the Limma-Voom pipeline38 315 

to calculate log2(RNA/DNA) as a measure of regulatory activity for each fragment or genomic 316 

bin in each orientation. For targeted assays that included negative control sequences, we 317 

modified the original TMM normalization method to rely solely on negative controls for 318 

adjusting library size and composition bias. This approach provides greater accuracy in 319 

normalization, particularly for targeted assays where the assumption that most fragments lack 320 

regulatory effects may not hold. 321 

After computing the log2(RNA/DNA) values, we assessed the regulatory activity of each 322 

fragment or genomic bin in both orientations by comparing it to the activity levels of negative 323 
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controls through a Z-score analysis rather than relying on an arbitrary log2(RNA/DNA) cutoff. 324 

This comparison allowed for the identification of regions with significantly elevated activity 325 

relative to the basal transcription level defined by the negative controls in each orientation. To 326 

mitigate orientation bias, we incorporated regulatory activity in both orientations as a criterion 327 

for determining whether a fragment or genomic bin qualifies as a potential enhancer. 328 

For genome-wide STARR-seq datasets that lacked negative controls in the original assays, we 329 

used genomic bins within exonic regions as surrogate negative controls, as enhancers are 330 

predominantly located in non-coding regions26,39,40. To ensure a clear distinction between 331 

potential enhancer regions and those likely to exhibit basal transcription, we excluded genomic 332 

bins overlapping the 300-bp flanking regions on either side of exons. This approach minimizes 333 

the risk of using genomic bins that may have counted fragments overlapping with enhancers in 334 

intronic regions, increasing the reliability of these surrogate negative controls. 335 

Finally, our pipeline recorded both active and inactive regions identified in an orientation-336 

independent manner, ensuring an accurate assessment of genome-wide coverage of tested 337 

regions. This comprehensive reporting approach also enables robust cross-assay comparisons. 338 

Detailed numbers of fragments or genomic bins tested in one or both orientations, the numbers of 339 

negative controls, and the numbers of enhancer regions identified are provided in the 340 

Supplementary Table 2. 341 

Improved Enhancer Identification Through Unified Enhancer Call Pipeline 342 

We applied the uniform enhancer call pipeline to all datasets to standardize the identification of 343 

enhancer regions. In the ATAC-STARR-seq dataset, while all accessible regions characterized 344 

by ATAC-seq peaks were initially included in the assay, 91.20% were statistically tested for 345 

regulatory activity in at least one orientation (Fig. 3b). Furthermore, the effective coverage of 346 

regions tested in both orientations within accessible chromatin was reduced to 64.72% (Fig. 3b). 347 

Similarly, for the WHG-STARR-seq dataset, 96.61% of the entire human genome was included 348 

in the assay; however, only 56.15% of regions were statistically assessed in at least one 349 

orientation, with just 44.59% tested in both orientations (Fig. 3c). These findings reveal that the 350 

effective coverage of genome-wide STARR-seq datasets is significantly lower than expected, 351 

underscoring the importance of comprehensive reporting of tested regions to accurately evaluate 352 

assay performance and coverage. 353 

Using our unified pipeline, we identified 57 enhancer regions in TilingMPRA (ENCSR394HXI), 354 

16,603 in LentiMPRA, 11,679 in ATAC-STARR-seq, and 25,505 in WHG-STARR-seq. 355 

Notably, these enhancer regions exhibited significant regulatory activity in both orientations. For 356 

the two TilingMPRA datasets (ENCSR817SFD and ENCSR363XER), which tested elements 357 

exclusively in one orientation, we adapted our pipeline to perform orientation-dependent 358 

analysis, identifying 2,117 enhancer regions in ENCSR817SFD and 3,761 in ENCSR363XER. 359 

To evaluate the significance of making orientation-independent enhancer calls, we investigated 360 

their epigenomic features by analyzing 2,000-bp windows centered on these 361 

regions. Specifically, we compared the epigenomic features of orientation-independent enhancer 362 

regions to those of regions that were tested in both orientations but exhibited significant activity 363 
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in only one, leveraging ENCODE datasets for DNase-seq, ATAC-seq, and ChIP-seq (H3K4me3 364 

and H3K27ac) in the K562 call line. Orientation-independent enhancers displayed higher 365 

chromatin accessibility, as indicated by stronger DNase-seq and ATAC-seq signal intensities 366 

compared to enhancers active in only one orientation across all datasets (Fig. 3d). Additionally, 367 

they exhibited greater enrichment of both promoter- and enhancer-associated histone 368 

modifications, with a more pronounced bimodal patter around their centers (Fig. 3e). These 369 

findings suggest that orientation-independent enhancers are more robustly marked by 370 

epigenomic features characteristic of active regulatory elements and highlight the importance of 371 

making orientation-independent enhancer calls.  372 

We also compared the enhancer regions identified through our unified processing pipeline with 373 

the original enhancer calls reported by each laboratory. Across all datasets, uniformly processed 374 

enhancer regions exhibited higher chromatin accessibility, as evidenced by stronger DNase-seq 375 

and ATAC-seq signals (Fig. 3f). Notably, while some enhancer calls from the unified pipeline 376 

were in inaccessible regions, they were still more enriched in accessible regions compared to 377 

original lab-reported peaks in the WHG-STARR-seq dataset (Fig. 3f). Additionally, histone 378 

modification profiles confirmed that orientation-independent enhancer regions identified by the 379 

unified pipeline were more strongly marked by H3K4me3 and H3K27ac compared to lab-380 

reported enhancer regions (Fig. 3g). These results highlight the advantages of our unified 381 

pipeline in enhancing the confidence of enhancer identification and providing a more reliable 382 

foundation for comparative and functional studies.  383 

Enhanced Consistency Across Assay Using Uniform Processed Enhancer Calls 384 

With both active and inactive regions recorded through our uniform enhancer call pipeline, we 385 

reassessed assay consistency by evaluating how many enhancers identified in one assay were 386 

also identified as enhancers in others. To achieve this, we conducted pairwise comparisons by 387 

assessing the overlap between enhancer regions from one assay and all tested regions in another. 388 

Because our enhancer regions were defined in an orientation-independent manner, inactive 389 

regions were also generated by merging elements or genomic bins tested in both orientations that 390 

lacked significant enhancer activity. 391 

For each pairwise comparison, enhancer regions from assay A were evaluated against all tested 392 

regions in assay B, and vice versa, as overlaps were not necessarily symmetric. In cases where an 393 

enhancer region overlapped multiple tested regions in another assay, or multiple enhancer 394 

regions overlapped a single tested region, we assigned the best overlap based on the highest 395 

number of overlapping base pairs to minimize redundancy. We then calculated the JI and 396 

recorded both the number of enhancer regions that were also classified as enhancers in the other 397 

assay and the total number of enhancer regions tested. By restricting comparisons to commonly 398 

tested regions, this approach provided a more accurate and comprehensive assessment of cross-399 

assay consistency. 400 

Using the minimal overlap threshold (≥1-bp overlap), we observed modest improvements in 401 

assay consistency, as indicated by higher JI values (Fig. 4a), though the improvement was not 402 

statistically significant (one-sided Wilcoxon paired test, p = 0.11). However, applying the ≥50% 403 

reciprocal overlap threshold resulted in a significant increase in cross-assay consistency, with JI 404 
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values substantially higher than those based on lab-reported enhancer regions (one-sided 405 

Wilcoxon paired test, p = 0.02). These findings demonstrate that implementing a uniform 406 

enhancer call pipeline and refining comparison strategies improve cross-assay consistency, 407 

highlighting the importance of standardized processing in functional characterization studies. 408 

Sequence Overlap and Assay-Specific Factors Influence Cross-Assay Consistency 409 

While previous comparisons using lab-reported enhancer regions showed lower agreement 410 

across assays when a stricter overlap criterion (≥50% reciprocal overlap) was applied, 411 

comparisons using uniformly processed data demonstrated the opposite trend: most pairwise 412 

comparisons exhibited increased JI values under the stricter criterion compared to the ≥1-bp 413 

threshold (Fig. 4a). For instance, when comparing LentiMPRA enhancers to tested regions in 414 

ATAC-STARR-seq and WHG-STARR-seq, the proportion of consistently active regions rose 415 

from 19% and 24% (using a ≥1-bp threshold) to 78% and 80% (using ≥50% reciprocal overlap), 416 

respectively. A similar pattern was observed in pairwise comparisons between ATAC-STARR-417 

seq and WHG-STARR-seq (Fig. 4b,c), indicating that enhancer identification is more consistent 418 

when comparing sequences with greater overlap. 419 

Despite the overall increase in consistency with more stringent overlap criteria, assay 420 

consistency remained largely unchanged when comparing enhancer regions identified in ATAC-421 

STARR-seq and WHG-STARR-seq to those tested in LentiMPRA, regardless of the overlap 422 

threshold (Fig. 4b,c and Extended Data Fig. 4a). This suggests that assay-specific factors, rather 423 

than sequence overlap alone, play a dominant role in determining cross-assay agreement for 424 

LentiMPRA. Given that LentiMPRA positions candidate sequences upstream of a reporter gene, 425 

we suspected that its ability to capture promoter activity rather than enhancer activity is a key 426 

factor influencing cross-assay agreement. 427 

To test this, we assessed assay consistency separately in proximal and distal regions. 428 

TilingMPRA is excluded from this analysis due to limited sample size. Tested regions were 429 

classified as proximal if ≥90% of their sequence overlapped within 500 bp of a protein-coding 430 

TSS (based on GENCODE41 annotation v45) and distal otherwise. Stratifying comparisons by 431 

TSS proximity revealed that ATAC-STARR-seq and WHG-STARR-seq exhibited significantly 432 

higher consistency with LentiMPRA in proximal regions than in distal regions. Specifically, 433 

~62%-73% of proximal enhancer regions identified by STARR-seq assays were also active in 434 

LentiMPRA, whereas only ~33%-47% of distal enhancer regions showed consistent activity 435 

(Fig. 4d,e and Extended Data Fig. 4b,c). Notably, these proportions differed only when 436 

comparing distal versus proximal regions but remained largely unchanged across different 437 

overlap thresholds (Fig. 4d,e). These findings suggest that LentiMPRA is more likely capturing 438 

promoter activity rather than enhancer activity as measured in genome-wide STARR-seq assays, 439 

emphasizing that assay-specific factors play a dominant role in determining cross-assay 440 

consistency when comparing to LentiMPRA. 441 

Evaluating Functional Support for Enhancer-Like and Promoter-Like Sequences in cCREs 442 

Epigenomic features such as DNA accessibility and histone modifications have long been 443 

recognized as key indicators of active enhancers5,8,40. Leveraging these features, the ENCODE 444 
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Consortium established a registry of cCREs8. To assess how well these elements are functionally 445 

validated by massively parallel reporter assays, we examined their coverage and activity in 446 

LentiMPRA, ATAC-STARR-seq, and WHG-STARR-seq datasets. 447 

Since cCREs were not specifically designed as targeted sequences in these assays, we assessed 448 

their coverage by identifying overlaps between cCRE elements and tested regions. A cCRE was 449 

considered covered if it had at least a 1-bp overlap with a tested region. To further characterize 450 

their representation across assays, we categorized covered cCREs into three mutually exclusive 451 

groups based on their overlap extent: high (≥80% reciprocal overlap), moderate (50%-80% 452 

reciprocal overlap), and low (all other overlap). Detailed coverage statistics are provided in 453 

Extended Data Fig. 5a and Supplementary Table 3. 454 

To evaluate the functional relevance of cCREs, we analyzed their active rates across 455 

LentiMPRA, ATAC-STARR-seq, and WHG-STARR-seq (Extended Data Fig. 5b). In both 456 

genome-wide STARR-seq datasets, cCREs associated with enhancer-like and promoter-like 457 

signatures—dELS, pELS, and PLS—demonstrated the highest active rates among all cCRE 458 

subtypes, whereas other cCRE categories exhibited lower active rates. Specifically, high-overlap 459 

dELS, pELS, and PLS each showed active rates ranging from 46% to 89% in ATAC-STARR-460 

seq and WHG-STARR-seq (Extended Data Fig. 5b), highlighting their strong functional 461 

relevance in both genome-wide STARR-seq datasets. In contrast, the active rates of other cCRE 462 

subtypes declined sharply, with CA-H3K4me3 and CA-TF elements exhibiting moderate active 463 

rates (22%-49%), followed by CA-CTCF and CA-only elements, which showed more limited 464 

active rates (5%-9%). As expected, low-DNase elements, which are generally classified as 465 

inactive cCREs, displayed the lowest active rates (2%-4%), only slightly higher than regions 466 

without any cCRE overlap (0.4%-0.5%).  467 

While the overall active rate patterns were consistent across cCRE subtypes in genome-wide 468 

STARR-seq datasets, LentiMPRA exhibited a distinct trend. PLS elements displayed the highest 469 

active rate (51%), whereas dELS (18%) and pELS (19%) showed similar activity levels to CA-470 

H3K4me3 (21%), CA-TF (14%), and CA-only (15%) (Extended Data Fig. 5b). These findings 471 

again suggest that LentiMPRA may preferentially capture promoter-associated activity rather 472 

than enhancer activity, distinguishing it from genome-wide STARR-seq assays. 473 

Additionally, low-DNase elements exhibited an 8% active rate in LentiMPRA, markedly higher 474 

than the 2%-4% observed in ATAC-STARR-seq and WHG-STARR-seq. Regions without 475 

overlap with any cCREs also showed a higher active rate (2%) compared to the minimal activity 476 

levels detected in ATAC-STARR-seq and WHG-STARR-seq (0.4%-0.5%). These results 477 

indicate that, beyond its tendency to capture promoter activity, LentiMPRA readouts are 478 

influenced by additional assay-specific factors. One possible explanation is that LentiMPRA’s 479 

random genomic integration may position low-DNase elements into accessible chromatin 480 

regions, artificially increasing their apparent activity. 481 

Collectively, these findings highlight the predictive power of cCREs in identifying active 482 

enhancers in reporter assays, particularly for dELS, pELS, and PLS, which exhibited 483 

significantly higher activity than other cCRE categories. The near absence of enhancer activity in 484 

regions lacking biochemical features underscores the essential role of chromatin accessibility and 485 
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histone modifications in defining functional enhancers. At the same time, the distinct activity 486 

patterns observed in LentiMPRA, likely reflecting its preference for promoter-associated 487 

sequences and other assay-specific influences, emphasize the need to carefully consider assay-488 

specific factors when interpreting results and integrating data from different massively parallel 489 

reporter assays. 490 

Transcription as a critical mark of Active Enhancers 491 

In addition to epigenomic features, enhancers are distinguished by their ability to generate 492 

eRNAs through divergent transcription42,43.Tippens et al. demonstrated that divergent 493 

transcription serves as a more precise marker of active enhancers than histone modifications and 494 

identified a fundamental enhancer unit based on divergent transcription start sites (TSSs)18. 495 

Expanding on this, Yao et al. showed that GRO/PRO-cap is the most effective experimental 496 

approach to identify eRNAs and their divergent TSSs, and further compiled an enhancer 497 

compendium with a unified definition of enhancers based on divergent transcription44. 498 

Leveraging uniformly processed enhancer calls from large-scale reporter assays, we next 499 

examined these transcriptional characteristics of enhancers. Using the same analytical framework 500 

applied to cCREs, we assessed the coverage of GRO-cap enhancers44(divergent elements 501 

identified by PINTS from GRO-cap data) across the three assays. Detailed statistics are provided 502 

in Supplementary Table 4 and Extended Data Fig. 5d. 503 

High-overlap GRO-cap enhancers exhibited strong enhancer activity, with 87% and 78% being 504 

active in ATAC-STARR-seq and WHG-STARR-seq, respectively (Extended Data Fig. 5e). 505 

Furthermore, GRO-cap enhancers consistently displayed significantly higher active rates 506 

compared to regions that neither overlapped with any GRO-cap elements nor exhibited GRO-cap 507 

signals (Extended Data Fig. 5e,f). Notably, while regions devoid of both transcriptional signals 508 

and overlap with GRO-cap elements exhibited the lowest active rates across all three assays 509 

(0.7%-4%), regions that did not overlap with any annotated GRO-cap elements but still 510 

contained detectable GRO-cap signals showed slightly higher, albeit low, levels of activity (2%-511 

11%) (Extended Data Fig. 5f). These findings reinforce the strong functional relevance of GRO-512 

cap enhancers in reporter assays, demonstrating that divergent transcription is a defining 513 

characteristic of active enhancers and supporting the enhancer architecture defined by previous 514 

studies18,44.  515 

To further explore the functional relevance of transcriptional level, we categorized tested regions 516 

in LentiMPRA, ATAC-STARR-seq, and WHG-STARR-seq into four transcription-level classes 517 

(high, medium, low and none) based on GRO-cap signals45 (see Methods) and calculated the 518 

active rates within each category. Our analysis revealed that regions with higher transcription 519 

levels were significantly more likely to function as enhancers across all three assays (Fig. 5a). 520 

Regions with no or low GRO-cap signals exhibited minimal enhancer activity, particularly in 521 

ATAC-STARR-seq and WHG-STARR-seq, where active rates remained below 1%. Regions 522 

with medium transcription level displayed moderate enhancer activity, with active rates around 523 

10% across assays, while highly transcribed regions exhibited the highest active rates, with 524 

approximately 30% of tested regions classified as active enhancers (Fig. 5a). These findings 525 

reinforce the role of transcription as a key marker of enhancer activity across reporter assays. 526 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 27, 2025. ; https://doi.org/10.1101/2025.03.25.645321doi: bioRxiv preprint 

https://doi.org/10.1101/2025.03.25.645321


Despite the low active rates observed in regions with little or no transcription, thousands of such 527 

regions were still identified as active enhancers across all three assays (Fig. 5a). This raised 528 

concerns that a subset of these enhancer calls might represent false-positive hits. To explore this 529 

possibility, we examined assay consistency across transcription classes, hypothesizing that 530 

regions with lower transcription levels would exhibit reduced cross-assay agreement, suggesting 531 

a higher prevalence of false positives. Indeed, using ≥50% reciprocal overlap as the comparison 532 

criterion, we observed a positive relationship between transcription levels and assay consistency 533 

(Fig. 5b, Extended Data Fig. 6). Regions lacking detectable transcription signals exhibited the 534 

lowest Jaccard Index values across all pairwise comparisons (Fig. 5b), indicating poor 535 

reproducibility across assays. Conversely, high-transcription regions exhibited the highest assay 536 

consistencies (Fig. 5b, Extended Data Fig. 6d). These results support the hypothesis that these 537 

reporter assays may yield a greater proportion of false positives in regions with lower 538 

transcription.  539 

Transcription Enhances the Predictive Power of Biochemical Features for Enhancer 540 

Activity 541 

Next, we assessed whether transcription improves the ability of biochemical features to predict 542 

active enhancers. We analyzed tested cCREs with high overlap (≥80% reciprocal overlap) with 543 

reporter assay regions and classified them as either transcribed or untranscribed based on 544 

detectable GRO-cap signals. We then compared their active rates across assays. 545 

Untranscribed cCREs exhibited low enhancer activity in all three assays (~0.8%-4%), with active 546 

rates only slightly higher than untranscribed regions that lacked cCRE or PINTS annotations 547 

(~0.3%-1%) (Fig. 5c). Untranscribed dELS, pELS, and PLS showed slightly elevated active rates 548 

(~0%-9%), though their sample sizes were limited. 549 

In contrast, transcribed cCREs displayed significantly higher active rates across all assays 550 

(~14%-29%) (Fig. 5c). This trend was particularly pronounced for transcribed dELS, pELS, and 551 

PLS, which exhibited much higher active rates (~17%-75%) than their untranscribed 552 

counterparts (Fig. 5c). These results indicate that dELS, pELS, and PLS contain a higher 553 

proportion of functional enhancers than other cCRE categories and suggest that transcription 554 

serves as an additional predictive layer beyond traditional biochemical features such as 555 

chromatin accessibility and histone modifications (H3K4me3 and H3K27ac). 556 

Further stratification of tested dELS, pELS, and PLS by transcription levels reinforced the strong 557 

relationship between transcription and enhancer activity across all assay types (Fig. 5d). Highly 558 

transcribed dELS, pELS, and PLS exhibited particularly high active rates, reaching 83% in 559 

ATAC-STARR-seq and 74% in WHG-STARR-seq (Fig. 5d). These findings emphasize 560 

transcription as a critical defining feature of active enhancers, complementing biochemical 561 

features and improving the precision of enhancer annotation. 562 

  563 
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Discussion 564 

This study provides a comprehensive evaluation of a total of six reporter assay datasets generated 565 

by different laboratories, representing four major MPRA and STARR-seq assay types. Our 566 

analysis revealed substantial inconsistencies in enhancer identification across assays using 567 

original lab-reported enhancer calls, primarily driven by technical variations in experimental 568 

workflows and data processing methodologies. By applying a standardized analytical framework, 569 

we systematically assessed dataset quality, cross-assay consistency in enhancer identification, 570 

and the functional validation of enhancers based on epigenomic features and transcriptional 571 

features. Our findings highlight both the strengths and limitations of current high-throughput 572 

reporter assays in capturing enhancer activity and underscore the need for standardized 573 

experimental and analytical approaches in functional characterization studies. 574 

Through re-processing and quality evaluation of all datasets, we identified insufficient fragment 575 

coverage, possibly stemming from inadequate sequencing depth and low transfection efficiency, 576 

as the critical limitation in genome-wide STARR-seq assays. These factors compromise not only 577 

the reproducibility of enhancer identification but also the effective coverage of tested genomic 578 

regions. Particularly in genome-wide assays, large proportions of the genome may remain 579 

untested or excluded due to low read depth, leading to an overestimation of genome-wide 580 

coverage. Addressing these technical challenges is essential for improving the reliability and 581 

completeness of genome-wide enhancer screens. 582 

To address technical discrepancies across assays, we developed and applied a uniform enhancer 583 

call pipeline designed to produce orientation-independent enhancer calls. This pipeline 584 

incorporated features such as normalization to negative controls, stringent statistical thresholds, 585 

and a requirement for enhancer activity in both orientations. Our results demonstrated that this 586 

unified approach successfully mitigated many sources of technical variation, yielding a more 587 

reliable and consistent set of enhancer regions across datasets. Significantly, our findings 588 

emphasized the critical role of orientation-independent analysis and the inclusion of negative 589 

controls in enhancing the reliability of enhancer identification. Testing fragments in both 590 

orientations and evaluating regulatory activities relative to negative controls proved essential for 591 

reducing technical biases. However, we acknowledge that the stringent criteria employed in our 592 

pipeline, particularly the requirement for data in both orientations, may have contributed to false-593 

negative results, especially for regions with limited or missing data.  594 

Moreover, the primary goal of our unified enhancer call pipeline was to address technical factors 595 

underlying inconsistencies in enhancer identification across assays, rather than to 596 

comprehensively optimize sensitivity and specificity for all applications. Future studies should 597 

aim to systematically evaluate the trade-offs between sensitivity and specificity in various 598 

enhancer call pipelines. Such efforts will be crucial for refining enhancer identification 599 

methodologies, particularly as functional characterization assays become increasingly diverse 600 

and complex. 601 

Using uniformly processed enhancer calls, we conducted a comprehensive evaluation of cross-602 

assay consistency and found improved agreement in enhancer identification across assays. 603 

Further analysis demonstrated that increasing sequence overlap thresholds substantially 604 
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improved agreement, particularly in genome-wide STARR-seq datasets. However, LentiMPRA 605 

exhibited a distinct pattern, with its enhancer calls showing stronger agreement with STARR-seq 606 

assays in proximal regions, reinforcing its tendency to capture promoter-associated activity 607 

rather than distal enhancer activity. Additionally, LentiMPRA’s random integration mechanism 608 

likely introduces variability by positioning sequences into different chromatin environments, 609 

which may either enhance or suppress activity depending on the local chromatin state. These 610 

findings emphasize the importance of considering assay-specific characteristics when integrating 611 

data from different reporter assays to ensure accurate interpretation of enhancer function. 612 

By evaluating the functional relevance of candidate cis-regulatory elements (cCREs), we 613 

confirmed that epigenomic features, such as chromatin accessibility and histone modifications, 614 

serve as strong predictors of enhancer activity. cCREs associated with enhancer- and promoter-615 

like signatures—dELS, pELS, and PLS—exhibited significantly higher active rates across 616 

genome-wide STARR-seq datasets compared to other cCRE subtypes, reinforcing their 617 

biological relevance. Conversely, elements lacking chromatin accessibility and histone 618 

modifications displayed minimal activity, underscoring the essential role of these epigenomic 619 

features in defining active enhancers. 620 

LentiMPRA, however, displayed distinct activity patterns, with higher active rates for PLS and 621 

relatively lower activity for dELS and pELS compared to STARR-seq datasets. These 622 

differences suggest that LentiMPRA preferentially identifies promoter-driven regulatory 623 

elements rather than enhancers, further highlighting the need to consider assay-specific biases 624 

when interpreting MPRA data. Additionally, LentiMPRA showed unexpectedly higher active 625 

rates for low-DNase elements, possibly due to its random genomic integration placing these 626 

elements into more accessible chromatin regions, altering their apparent activity. These findings 627 

reinforce the need for careful interpretation of MPRA data. 628 

Beyond epigenomic features, transcription emerged as a key determinant of enhancer function, 629 

with regions with higher transcription level displaying significantly higher activity across 630 

reporter assays. High transcription levels were strongly correlated with active rates of tested 631 

regions, whereas regions with low or no transcription exhibited greater cross-assay variability, 632 

suggesting a higher likelihood of false-positive enhancer calls. This highlights the importance of 633 

incorporating transcriptional markers to refine enhancer predictions and reduce misclassification. 634 

Furthermore, integrating transcriptional activity with epigenomic evidence improved enhancer 635 

annotation, as transcribed cCREs—particularly dELS, pELS, and PLS—showed significantly 636 

higher active rates than their untranscribed counterparts. These results suggest that transcription 637 

serves as an additional predictive layer beyond traditional chromatin features and should be 638 

considered when defining functional enhancers. 639 

This study represents the first systematic evaluation of MPRA and STARR-seq datasets in real-640 

world applications. By identifying critical technical factors and implementing a standardized 641 

analytical framework, we provide a foundation for improving experimental protocols and data 642 

processing methods in high-throughput reporter assays. Our uniform enhancer call pipeline 643 

offers a robust approach to enhancing data consistency and can serves as a benchmark for future 644 

studies. 645 

 646 
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The analytical framework established in this study can be extended to compare results across 647 

diverse functional characterization assays, such as CRISPR-based screens. Furthermore, the 648 

reliable sets of enhancer regions identified through this pipeline can be leveraged to investigate 649 

sequence features, enhancer-promoter interactions, and the structural basis of enhancer activity. 650 

Such analyses will deepen our understanding of enhancer biology and elucidate the mechanisms 651 

underlying assay-specific variability. 652 

 653 

In summary, this study highlights the importance of standardization in enhancer characterization 654 

assays and demonstrates the value of integrating transcriptional and biochemical evidence for 655 

more accurate enhancer predictions. By addressing the technical and analytical challenges 656 

identified here, future studies can advance the functional characterization of human enhancers, 657 

ultimately improving our understanding of gene regulation and its implications for human health 658 

and disease. 659 

  660 
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Methods 661 

Original Reporter Assay Data Acquisition and Processing 662 

Element quantification data for TilingMPRA datasets and peak regions from ATAC-STARR-seq 663 

and WHG-STARR-seq datasets were obtained from the ENCODE portal26–28, with 664 

corresponding accession numbers listed in Supplementary Table 1. LentiMPRA quantification 665 

data and enhancer classifications were retrieved from its original publication35 and are also 666 

accessible through the ENCODE portal26–28. 667 

To define enhancer regions in TilingMPRA datasets, we applied a threshold of log2 fold change 668 

(log2FC) ≥ 1 with an adjusted p-value < 0.01. For the ATAC-STARR-seq dataset, regions with 669 

log2FC > 0 and an adjusted p-value < 0.01 were classified as enhancer regions. The total number 670 

of enhancer regions identified in each dataset, as well as the final numbers after merging 671 

overlapping regions, are summarized in Supplementary Table 1. 672 

Cross-Assay Comparison of Lab-Reported Enhancer Regions 673 

To assess the overlap between enhancer regions reported by different laboratories, we measured 674 

the fraction of enhancer regions in one assay that overlapped with enhancer regions identified in 675 

another. We performed pairwise comparisons across all datasets using two criteria: a minimal 676 

overlap threshold of 1 bp to maximize inclusion of partially overlapping regions (Extended Data 677 

Fig. 1b) and a ≥ 50% reciprocal overlap threshold to provide a stricter assessment of enhancer 678 

reproducibility (Extended Data Fig. 1c). The number of overlapping enhancer regions was 679 

recorded for each pairwise comparison (Fig. 1b and Extended Data Fig. 2a). 680 

Cross-Assay Comparison of Uniformly Processed Enhancer Regions 681 

To systematically evaluate enhancer identification consistency across assays, we first 682 

distinguished enhancer regions from inactive regions in genome-wide STARR-seq datasets. 683 

Inactive regions were defined as genomic bins tested in both orientations that did not overlap 684 

with any orientation-independent enhancer regions, with overlapping bins merged to form 685 

continuous inactive regions. 686 

For each pairwise comparison between assay A and assay B, we first identified orientation-687 

independent enhancer regions in assay A that overlapped with tested regions in both orientations 688 

in assay B. The tested regions in assay B included both orientation-independent enhancer regions 689 

and inactive regions. We then quantified the proportion of enhancer regions in assay A that were 690 

not only tested but also identified as enhancers in assay B. This proportion was calculated as the 691 

number of enhancer regions identified in both assays divided by the total number of enhancer 692 

regions in assay A that overlapped with tested regions in assay B. 693 

We applied the same two overlap criteria to assess cross-assay consistency: ≥1 bp overlap for 694 

broad inclusion and ≥50% reciprocal overlap for a more stringent evaluation. These comparisons 695 

were conducted across all datasets, and the results were reported in Heatmaps. 696 
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Jaccard Index Calculations 697 

To quantitatively assess enhancer identification consistency across assays, we computed the 698 

Jaccard Index (JI) for each pairwise comparison. The Jaccard Index measures the similarity 699 

between two datasets, ranging from 0 to 1, with lower values indicating weaker agreement 700 

between assays. 701 

The Jaccard Index for a given pair of assays, A and B, is defined as: 702 

JI(A,B) = |AB||AB| 703 

For comparisons based on lab-reported enhancer regions, A and B represent the sets of enhancer 704 

regions identified in two different assays. Given that enhancer regions vary in size across 705 

datasets and that multiple enhancer regions in one dataset may overlap multiple regions in 706 

another, |AB| is defined as the maximum number of overlapping enhancer regions observed in 707 

either direction of comparison (A vs. B and B vs. A). |AB| represents the total number of unique 708 

enhancer regions across both assays. 709 

For comparisons based on uniformly processed enhancer calls, A represents the set of 710 

orientation-independent enhancer regions in assay A that were also tested in both orientations in 711 

assay B, and B represents the corresponding set in assay B tested in both orientations in assay A. 712 

|AB| is also determined by the maximum number of overlapping enhancer regions across the two 713 

directional comparisons (A vs. B and B vs. A). 714 

Reprocessing of Genome-Wide STARR-seq Datasets 715 

BAM files for ATAC-STARR-seq and WHG-STARR-seq datasets were retrieved from the 716 

ENCODE portal26–28. We adapted parts of the STARRPeaker19 pipeline to process these BAM 717 

files and obtain original fragment counts for each library. 718 

To obtain a refined set of original fragments and their corresponding raw counts, we applied a 719 

series of stringent filtering criteria. Unmapped, secondary, and chimeric alignments were 720 

discarded to retain only primary alignments. Reads with a mapping quality score below 10 were 721 

excluded to ensure high-confidence sequencing data. To mitigate potential biases from PCR 722 

amplification, reads with identical genomic coordinates were collapsed, a step applied to DNA 723 

replicates in ATAC-STARR-seq and across all WHG-STARR-seq libraries. For RNA libraries in 724 

ATAC-STARR-seq, PCR duplicates were removed using unique molecular identifiers (UMIs) to 725 

distinguish true biological duplicates from amplification artifacts.  726 

Genomic Bin Count Generation 727 

To generate genomic bin counts, we used pybedtools46,47 to partition the human genome into 728 

100-bp bins with a 10-bp step size. For each bin, we summed counts of fragments that fully 729 

covered the genomic bin (Extended Data Fig. 3a). 730 
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Quality Assessment of Reporter Assay Datasets: Replicate Reproducibility 731 

To assess the reproducibility of replicates across datasets, we calculated Pearson correlation 732 

coefficients (ρ) for log-transformed counts per million (logCPM) of DNA and RNA counts, as 733 

well as log2(RNA/DNA) ratios. Correlations were computed between biological replicates 734 

within DNA and RNA libraries for each dataset, and the results were averaged to provide an 735 

overall measure of replicate reproducibility. 736 

For TilingMPRA and LentiMPRA datasets, replicate reproducibility was evaluated at the 737 

fragment level, where enhancer activity was quantified per tested sequence. In contrast, for 738 

genome-wide STARR-seq datasets, reproducibility was assessed at both the fragment level and 739 

the genomic bin level to account for the different resolution of data processing. Additionally, for 740 

the ATAC-STARR-seq dataset, we separately evaluated Pearson correlations in two conditions: 741 

across the entire genome and within accessible regions characterized by ATAC-seq peaks 742 

identified from DNA libraries in ATAC-STARR-seq. 743 

Quality Assessment of Reporter Assay Datasets: Library Recovery Rate 744 

The library recovery rate was defined as the proportion of unique fragments detected in a given 745 

library relative to the total number of unique fragments identified across the entire dataset, 746 

encompassing all DNA and RNA libraries. A fragment was considered part of the dataset’s total 747 

unique fragments if it was detected in at least one library, rather than requiring its presence in 748 

every library. This total serves as an estimate of the full set of input candidate fragments. 749 

This metric provides insight into the reproducibility of fragment detection across replicates and 750 

carries slightly different implications for DNA and RNA libraries. In DNA libraries, higher 751 

recovery rates indicate greater consistency in library preparation and sufficient sequencing depth, 752 

whereas in RNA libraries, higher recovery rates reflect both efficient transfection and adequate 753 

sequencing depth. Conversely, lower DNA library recovery rates may suggest insufficient 754 

sequencing depth or stochastic loss of fragments during library preparation, while lower RNA 755 

library recovery rates could indicate transfection inefficiencies or suboptimal sequencing depth.  756 

By evaluating library recovery rates for DNA and RNA libraries, we can better assess dataset 757 

quality, identifying potential technical limitations affecting dataset quality. The average library 758 

recovery rates were calculated for DNA and RNA libraries separately across assays and are 759 

presented in Fig. 2d. 760 

Evaluation of Assay Coverage in the DNA libraries in Genome-wide STARR-seq Datasets 761 

To assess potential limitations in sequencing depth within genome-wide STARR-seq datasets, 762 

we examined library complexity and genome-wide coverage by applying various read depth 763 

thresholds in DNA libraries. We imposed minimum raw count thresholds of 10, 20, 50, and 100 764 

across all DNA libraries to segment the datasets and evaluate library complexity and genome-765 

wide coverage for each remaining subset of the datasets. These assessments were conducted after 766 

binning original fragments into genomic bins.  767 

Since the DNA libraries of genome-wide STARR-seq assays were sequenced before transfection, 768 

they reflect the original fragment distribution across the genome. The representation of a region 769 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 27, 2025. ; https://doi.org/10.1101/2025.03.25.645321doi: bioRxiv preprint 

https://doi.org/10.1101/2025.03.25.645321


in the input DNA libraries plays a crucial role in determining its likelihood of being transfected 770 

and subsequently detected in the output RNA libraries. If a region was underrepresented in the 771 

input, it is less likely to have been thoroughly tested for enhancer activity in the RNA output.  772 

We utilized pybedtools46,47 to quantify the genomic coverage by computing the number of base 773 

pairs covered at each threshold. The percentage of genome-wide coverage was determined by 774 

dividing the number of covered base pairs by the total number of base pairs in the hg38 human 775 

reference genome48. 776 

For ATAC-STARR-seq, which was specifically designed to enrich open chromatin regions 777 

rather than provide full genome coverage, we additionally evaluated its coverage within open 778 

chromatin regions, as defined by ATAC-seq peaks from its DNA libraries. The open chromatin 779 

coverage of ATAC-STARR-seq was calculated by dividing the number of base pairs covered 780 

within ATAC-seq peaks by the total number of base pairs in these peaks. 781 

To provide a comparison, we also assessed open chromatin coverage for LentiMPRA, as its 782 

candidate sequences were selected from DNase-seq peaks. DNase-seq peak regions were 783 

obtained from the ENCODE portal26–28 (Accession: ENCFF185XRG). The open chromatin 784 

coverage for LentiMPRA was calculated using the same approach as in ATAC-STARR-seq, by 785 

determining the fraction of base pairs covered within DNase-seq peak regions. 786 

Uniform Enhancer Call Pipeline 787 

To quantify enhancer activity based on log₂(RNA/DNA) ratios, we adapted the Limma-Voom 788 

pipeline49 with key modifications tailored to different datasets. While the linear model 789 

framework was retained, we implemented dataset-specific filtering strategies, a modified TMM 790 

normalization approach, and a Z-score-based classification method to identify enhancer regions 791 

in an orientation-independent manner.  792 

Uniform Enhancer Call Pipeline: Dataset-Specific Filtering Strategy 793 

Our filtering strategy was adapted from the filterByExpr function in edgeR50. Initially, raw 794 

counts were transformed into log-counts per million (logCPM) to normalize for variations in 795 

library size. The filtering threshold was determined by computing the logCPM equivalent of a 796 

predefined raw count cutoff, ensuring sufficient read depth for reliable downstream statistical 797 

analysis. 798 

Fragments were retained if their logCPM values exceeded the threshold across all DNA libraries 799 

or, in cases where stricter filtering would excessively reduce coverage, in a minimum required 800 

number of libraries, regardless of whether they were DNA or RNA libraries. This approach 801 

ensured a balance between stringent filtering for reliable enhancer activity detection and 802 

preserving sufficient genome-wide coverage across diverse reporter assay datasets. 803 

For TilingMPRA and LentiMPRA, the filtering threshold was determined using the smallest 804 

DNA library, applying a raw count threshold of 10 to establish the corresponding logCPM 805 

cutoff. In ATAC-STARR-seq, to accommodate the larger complexity of the dataset while 806 

maintaining sufficient coverage, the threshold was calculated using the average DNA library size 807 
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with a raw count of 20. In WHG-STARR-seq, where only a single DNA library was available, 808 

the logCPM threshold was instead based on the smallest library across both DNA and RNA 809 

libraries, using a raw count of 10. Unlike the other assays, where filtering was applied across all 810 

DNA libraries, WHG-STARR-seq employed a more lenient criterion, retaining fragments if they 811 

met the logCPM threshold in at least two libraries, regardless of type. This dataset-specific 812 

adaptation ensured that filtering remained stringent enough to remove fragments with low read 813 

depth while preserving sufficient genome-wide coverage for reliable enhancer identification. 814 

Uniform Enhancer Call Pipeline: Normalization Strategy 815 

To normalize for library size differences, we applied the Trimmed Mean of M-values (TMM) 816 

normalization from edgeR37,50,  following the standard Limma-Voom framework. In ATAC-817 

STARR-seq and WHG-STARR-seq, where most genomic bins were expected to exhibit no 818 

regulatory activity (i.e., showing no significant difference between RNA and DNA libraries), we 819 

applied the conventional TMM normalization method, assuming that the majority of regions had 820 

minimal transcriptional changes. 821 

For LentiMPRA and TilingMPRA, we implemented a modified TMM normalization approach to 822 

address assay-specific biases. These assays included designated negative control sequences, and 823 

in the case of LentiMPRA, candidate sequences were particularly enriched for protein-coding 824 

promoters and potential enhancer elements35. This enrichment could result in a dataset 825 

disproportionately composed of regulatory-active fragments, making the standard assumption 826 

that most fragments were not differentially expressed less applicable. To address this, we 827 

modified TMM normalization to rely exclusively on negative control elements, allowing for a 828 

more accurate adjustment of library size and composition biases without being influenced by the 829 

overrepresentation of active regulatory elements. This refinement optimized normalization for 830 

the unique design of these assays, ensuring more reliable quantification of enhancer activity. 831 

Uniform Enhancer Call Pipeline: Enhancer Classification and Statistical Significance 832 

Using the Limma-Voom procedure, log2(RNA/DNA) ratios were then calculated to quantify 833 

enhancer activity for each fragment or genomic bin. Rather than applying an arbitrary threshold, 834 

we employed a Z-score-based approach to identify regions with significantly elevated activity 835 

compared to background transcription levels. Background transcription levels were estimated 836 

using negative control elements, and the log2(RNA/DNA) threshold was set at the 95th 837 

percentile of negative control distributions. 838 

For genome-wide STARR-seq datasets that lacked dedicated negative controls, genomic bins 839 

located within exonic regions were used as surrogate controls to determine the log2(RNA/DNA) 840 

threshold. This approach was based on previous studies indicating that enhancers are primarily 841 

located in non-coding regions26,39,40. To further refine enhancer identification and mitigate 842 

orientation bias, enhancer regions were required to exhibit significant activity in both forward 843 

and reverse orientations. First, fragments or genomic bins tested in both orientations were 844 

identified. Regions were then classified as enhancers if their log2(RNA/DNA) ratios exceeded 845 

the threshold and had an adjusted p-value < 0.05. Overlapping fragments or genomic bins were 846 

merged to generate the final set of enhancer regions, ensuring a robust and unbiased 847 

identification process. 848 
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Uniform Enhancer Call Pipeline: Comprehensive Reporting and Dataset Summary 849 

The pipeline provided a comprehensive reporting of both active and inactive regions, ensuring 850 

accurate estimation of genome-wide coverage and facilitating robust cross-assay comparisons. 851 

For genome-wide STARR-seq datasets, we reported multiple levels of coverage to reflect the 852 

extent of assay representation. Assayed coverage included all genomic bins before applying 853 

filters, representing the initial set of regions targeted in the experiment. Tested coverage 854 

encompassed genomic bins that remained after applying filtering criteria, reflecting regions with 855 

sufficient read depth for reliable enhancer activity quantification. Additionally, tested coverage 856 

in both orientations was defined as the subset of tested genomic bins that were assayed in both 857 

forward and reverse orientations, ensuring a stringent assessment of enhancer activity 858 

independent of strand bias. 859 

The final dataset included log2(RNA/DNA) ratios, Z-scores, and statistical significance metrics 860 

for all tested genomic bins, as well as for bins tested in both orientations. Additionally, merged 861 

orientation-independent enhancer regions were reported to provide a set of enhancer calls across 862 

datasets. A summary of enhancer region counts, negative controls, and tested regions for each 863 

dataset is provided in Supplementary Table 2. 864 

Evaluation of Genomic Context to Compare Regions 865 

To examine the genomic context of enhancer regions, including DNA accessibility and histone 866 

modifications (H3K4me3 and H3K27ac), we compared lab-reported enhancer regions with 867 

uniformly processed enhancer regions and orientation-independent enhancers with regions tested 868 

in both orientations but identified as active in only one orientation. We utilized publicly available 869 

datasets from the ENCODE portal26–28, specifically DNase-seq data (ENCFF972GVB), ATAC-870 

seq data (ENCFF102ARJ), H3K4me3 ChIP-seq data (ENCFF911JVK), and H3K27ac ChIP-seq 871 

data (ENCFF381NDD). 872 

For visualization, we used deepTools48 to generate metaplots of signal intensities across 873 

enhancer regions. To compare lab-reported enhancer regions with uniformly processed enhancer 874 

regions, we randomly sampled 5,000 enhancer regions from each dataset. Signal intensities were 875 

plotted within a 2,000-bp window centered at the region midpoint to capture local epigenomics 876 

features. 877 

For the comparison between orientation-independent enhancer regions and those tested in both 878 

orientations but were active in only one orientation, we first selected genomic bins that were 879 

tested in both orientations. We then identified bins that were active in only one orientation, 880 

merged overlapping bins into contiguous regions, and excluded any regions that overlapped with 881 

orientation-independent enhancers. From each dataset, we randomly sampled 5,000 orientation-882 

independent enhancer regions and 5,000 regions that were active in only one orientation for 883 

comparative analysis. 884 
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Negative Control Regions in Genome-wide STARR-seq Datasets 885 

Since the original ATAC-STARR-seq and WHG-STARR-seq assays did not include dedicated 886 

negative controls, we leveraged their genome-wide coverage to define genomic bins overlapping 887 

exonic regions as surrogate negative controls. This allowed for the implementation of a Z-score 888 

approach in these datasets to establish a background transcription level for enhancer 889 

classification. 890 

To identify suitable genomic bins as negative controls, we extracted all exons of protein-coding 891 

genes from the GENCODE v42 annotation (hg38)51. Because the original fragments covering the 892 

100-bp genomic bins could be substantially longer, we further excluded 300-bp flanking regions 893 

on both sides of each exon to prevent potential overlap with adjacent intronic regions, which 894 

could confound the regulatory activity measurements of exonic genomic bins. This filtering step 895 

ensured that only mid-exonic regions were retained as the final negative control reference 896 

regions.  897 

We then identified all genomic bins that were fully contained within these negative control 898 

reference regions. These bins were used exclusively in the Z-score approach to characterize 899 

background transcription levels but were not used in the TMM normalization process. 900 

Analysis of Coverage and Active Rate of cCREs and GRO-cap Enhancers 901 

The comprehensive reporting of both active and inactive regions in genome-wide STARR-seq 902 

datasets enabled a systematic evaluation of the coverage and active rates of alternative enhancer 903 

annotations, such as cCREs and GRO-cap enhancers, across assays.  904 

We retrieved cCRE annotations for K562 cells (Accession: ENCFF286VQG) from the ENCODE 905 

Portal26–28. GRO-cap enhancers were defined as divergent elements identified by PINTS44.  906 

To determine the extent to which these enhancer annotations were tested in LentiMPRA, ATAC-907 

STARR-seq, and WHG-STARR-seq, we applied three mutually exclusive overlap categories: (1) 908 

high-overlap (≥80% reciprocal overlap), (2) moderate-overlap (50%-80% reciprocal overlap), 909 

and (3) low-overlap (all other overlaps). The number of cCREs and GRO-cap enhancers tested in 910 

each assay is provided in Supplementary Table 3 and Supplementary Table 4. 911 

To assess the functional relevance of these tested elements, we calculated their active rates 912 

within each overlap category. The active rate for each element type was defined as the proportion 913 

of tested elements that exhibited significant regulatory activity.  914 

Annotation of Transcription Levels for Tested Regions Using GRO-cap Signals 915 

To compare the active rates of tested regions with different transcription levels, we annotated 916 

each tested region with transcription levels based on GRO-cap signal data extracted from bigWig 917 

files45. 918 

To quantify the transcriptional activity within each tested region, we summed the GRO-cap 919 

signal from both orientations and normalized it by the region size. The normalized transcription 920 
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level for each region was computed as the total GRO-cap signal divided by the length of the 921 

tested region. 922 

Based on the normalized GRO-cap signal, we classified transcription levels into four categories: 923 

(1) None, for regions with no detectable GRO-cap signal; (2) Low, for regions with normalized 924 

GRO-cap signal ≤ 0.01; (3) Medium, for regions with normalized GRO-cap signal > 0.01 and ≤ 925 

0.08; and (4) High, for regions with normalized GRO-cap signal > 0.08.  926 

 927 

  928 
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Supplementary Information 929 

MPRA and STARR-seq Datasets Utilized in This Study 930 

TilingMPRA 931 

This study includes three TilingMPRA datasets generated by the same laboratory, designed to 932 

screen enhancers within selected gene loci using a tiling approach with overlapping 200-bp 933 

sequences.The first dataset, ENCSR394HXI, assayed tiling sequences in both orientations with a 934 

5-bp sliding window across the FEN1, FADS1, FADS2, and FADS3 loci. The second dataset, 935 

ENCSR917SFD, tested tiling sequences in the forward orientation with a 50-bp sliding window 936 

at the MYC and GATA1 loci. The third dataset, ENCSR363XER, analyzed tiling sequences in the 937 

forward orientation using a 100-bp sliding window, targeting the LMO2, HBE1, RBM38, HBA2, 938 

and BCL11A loci. 939 

The experimental design of these TilingMPRAs follows the classic MPRA framework, utilizing 940 

the pGL4.23 vector, with barcodes incorporated into the 3′ UTR of the reporter gene. These 941 

assays were performed episomally. Negative and positive controls were included in all three 942 

datasets, and candidate elements were synthesized using oligonucleotide synthesis. DNA 943 

libraries were sequenced prior to transfection, with stringent control of PCR cycles to minimize 944 

amplification bias. The datasets were originally analyzed using DESeq252 compute log₂ fold 945 

changes between RNA and DNA libraries and assess statistical significance. Normalization was 946 

applied relative to the distribution of negative controls, and enhancer activity was assigned to 947 

elements with a log₂ fold change ≥ 1 and an adjusted p-value < 0.01. 948 

LentiMPRA 949 

The LentiMPRA dataset was designed to characterize putative enhancers and promoters selected 950 

from DNase I hypersensitive sites (DHSs) and tiling sequences outside DHS regions. These 951 

sequences were chosen from loci including GATA1, MYC, HBE1, LMO2, RBM38, HBA2, and 952 

BCL11A, with additional positive and negative controls29,35. The 200-bp elements were 953 

synthesized via oligonucleotide synthesis. 954 

LentiMPRA utilizes the pLG-Scel vector, which integrates candidate sequences into the genome 955 

via lentiviral delivery, with barcodes located in the 5′ UTR of the reporter gene35. Unlike 956 

TilingMPRA, both DNA and RNA libraries were collected from cells post-integration. To 957 

distinguish biological duplicates from PCR duplicates, unique molecular identifiers (UMIs) were 958 

included in the sequencing library before sequencing. The dataset was processed using 959 

MPRAflow35,53 computing log₂ fold changes per element across replicates. Normalization was 960 

performed within each replicate, and the final log₂ fold change for each element was calculated 961 

as the average across all replicates. Elements with log₂ fold changes exceeding the 95th 962 

percentile of negative controls were classified as enhancers35. 963 

ATAC-STARR-seq 964 
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ATAC-STARR-seq integrates ATAC-seq (Assay for Transposase-Accessible Chromatin with 965 

high-throughput sequencing) with STARR-seq to identify enhancers active in accessible 966 

chromatin regions. By leveraging the open chromatin landscape, this approach facilitates the 967 

functional validation of active enhancers. 968 

The assay utilized the ORI-Thy1.1 vector in an episomal context, allowing enhancer activity to 969 

be measured independently of chromatin context effects. DNA libraries were sequenced prior to 970 

transfection, and UMIs were incorporated exclusively into RNA libraries. PCR duplicates were 971 

removed from DNA libraries by collapsing fragments with identical genomic coordinates. 972 

ATAC-STARR-seq data were analyzed using CSAW (ChIP-Seq Analysis with Sliding 973 

Windows)54,55. This method employs a genome-wide sliding window approach, quantifying 974 

fragment overlaps and identifying differential activity between RNA and DNA libraries via the 975 

quasi-likelihood framework in edgeR54–56. Enhancer activity was assigned to genomic regions 976 

exhibiting transcriptional activity (log₂ fold change ≥ 0) and statistically significant enrichment 977 

(adjusted p-value < 0.05). 978 

WHG-STARR-seq 979 

WHG-STARR-seq was designed for genome-wide enhancer identification using randomly 980 

fragmented DNA15. The DNA libraries were sequenced before transfection to establish baseline 981 

representation. 982 

The assay employed the hSTARR-seq_ORI vector. Unlike the targeted approaches of 983 

LentiMPRA and TilingMPRA, WHG-STARR-seq screened fragmented genomic sequences 984 

without predefined selection criteria. Data were processed using CRADLE20 (Correction of Read 985 

Counts and Detection of Locally Enriched Regions), which corrects for sequence-based read 986 

count biases and identifies significantly enriched regions based on base-pair-level read density. 987 

  988 
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Figure 1. Overview of Experimental Designs and Assay Consistencies Across MPRAs and 989 

STARR-seq Assays   990 

(a) Schematic representation of the experimental workflows for four types of MPRAs and 991 

STARR-seq assays analyzed in this study.  992 

(b) Heatmap displaying the number of overlapping enhancer regions between assays and their 993 

percentage relative to the total number of enhancer regions identified in each assay, based on the 994 

≥1-bp overlap criterion.  995 

(c) Heatmap presenting the Jaccard Index for pairwise comparisons between assays using ≥1-bp 996 

overlap criterion, quantifying overall similarity in enhancer identification. 997 

(d) Schematic illustration of assayed coverage and tested coverage of reporter assays, 998 

distinguishing the proportion of the genome initially assayed versus the regions effectively tested 999 

for enhancer activity.  1000 
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Figure 2. Evaluation of Data Quality Across MPRAs and STARR-seq Assays  1002 

(a) Funnel plot showing the genome-wide coverage distribution of WHG-STARR-seq and 1003 

ATAC-STARR-seq at varying read depths thresholds in DNA libraries.  1004 

(b) Funnel plot illustrating the coverage distribution of accessible regions at different read depths 1005 

thresholds in DNA libraries for ATAC-STARR-seq and LentiMPRA. Accessible regions are 1006 

defined by ATAC-seq peaks from ATAC-STARR-seq DNA libraries and DNase-seq narrow 1007 

peaks for LentiMPRA.  1008 

(c) Bar plot presenting average Pearson correlation coefficients for log2-transformed DNA CPM 1009 

and RNA CPM, and log2(RNA/DNA) ratios across assays.  1010 

(d) Bar plot depicting average library recovery rates in DNA and RNA libraries across assays. 1011 

 1012 
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Figure 3. Enhancer Identification Using a Unified Pipeline  1014 

(a) Schematic of the uniform enhancer call pipeline. The workflow begins with a raw count 1015 

matrix as input, applies dataset-specific filters to exclude low-depth regions, and normalizes 1016 

library size using TMM normalization. Regulatory activity is calculated as log2(RNA/DNA) 1017 

values and Z-score analysis is performed to identify regions with significantly higher regulatory 1018 

activity than negative control regions as enhancer regions in an orientation-independent manner.  1019 

(b) Bar plot showing the assayed coverage, tested coverage in either orientation and tested 1020 

coverage in both orientation for open chromatin regions characterized by ATAC-seq peaks 1021 

derived from DNA libraries in ATAC-STARR-seq.  1022 

(c) Bar plot summarizing genome-wide assayed coverage, tested coverage in either orientation 1023 

and tested coverage in both orientation.  1024 

(d) Meta-plots comparing the average DNase-seq and ATAC-seq signal profiles (±1 kb from the 1025 

center) for 2,000 enhancer regions randomly sampled from those identified in both orientations 1026 

versus 2,000 regions tested in both orientations but active in only one orientation 1027 

(e) Meta-plots comparing the average of H3K4me3 and H3K27ac histone modification profiles 1028 

(±1 kb from the center) for 2, 000 enhancer regions randomly sampled from those identified in 1029 

both orientations versus 2,000 regions tested in both orientations but active in only one 1030 

orientation.  1031 

(f) Meta-plots comparing the average DNase-seq and ATAC-seq signal profile (±1 kb from the 1032 

center) for 2,000 randomly sampled enhancer regions from laboratory-reported enhancer calls 1033 

versus those identified using the uniform enhancer call pipeline.  1034 

(g) Meta-plots comparing the average of H3K4me3 and H3K27ac histone profiles (±1 kb from 1035 

the center) for 2,000 randomly sampled enhancer regions from laboratory-reported enhancer 1036 

calls versus those identified using the uniform enhancer call pipeline.  1037 

 1038 
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Figure 4. Enhanced Consistency in Cross-Assay Comparisons Using Uniformly Processed 1040 

Enhancer Calls 1041 

(a) Box plot showing the Jaccard Index for pairwise comparisons between assays, calculated 1042 

using the minimal overlap criterion of 1-bp and the stricter criterion of ≥50% reciprocal overlap. 1043 

Results are shown for both laboratory-reported and uniformly processed enhancer calls, 1044 

illustrating the improved consistency achieved through uniform processing.  1045 

(b,c) Heatmaps displaying the number of overlapping enhancer regions between assays under the 1046 

≥1-bp overlap criterion (b) and under the ≥50% reciprocal overlap criterion (c). Each cell shows 1047 

the ratio of the number of enhancer regions in the row dataset that overlap with enhancer regions 1048 

in the column dataset to the number of enhancer regions in the row dataset overlapping with 1049 

tested regions in the column dataset. Diagonal cells display the total number of enhancer regions 1050 

identified in each dataset.  1051 

(d,e) Heatmaps displaying the number of overlapping enhancer regions between assays under the 1052 

≥50% reciprocal overlap criterion in proximal regions (d) and distal regions (e).  1053 

  1054 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 27, 2025. ; https://doi.org/10.1101/2025.03.25.645321doi: bioRxiv preprint 

https://doi.org/10.1101/2025.03.25.645321


Figure 5. Impact of Transcription Levels on Active Rates and Assay Consistencies 1055 

(a) Bar plot illustrating the active rates of all tested regions in LentiMPRA, ATAC-STARR-seq, 1056 

and WHG-STARR-seq, categorized by transcription levels (none, low, medium, and high) 1057 

determined by GRO-cap signals.  1058 

(b) Line plot depicting Jaccard Index values for pairwise comparisons between LentiMPRA, 1059 

ATAC-STARR-seq, and WHG-STARR-seq across all tested regions with varying transcription 1060 

levels, calculated using the ≥50% reciprocal overlap criterion.  1061 

(c) Bar plot illustrating the active rate of transcribed and untranscribed regions with high-overlap 1062 

with any types of cCREs or with high-overlap with dELS, pELS, and PLS or without any overlap 1063 

with cCRE and PINTS elements.  1064 

(d) Bar plot showing the active rate of high-overlap dELS, pELS, and PLS regions with different 1065 

transcription levels (low, medium, high) determined by GRO-cap signals 1066 
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Extended Data Figure 1. Schematic Representation of Overlap Criteria 1084 

(a) No overlap between regions A and B.  1085 

(b) 1-bp overlap between regions A and B.  1086 

(c) ≥50% reciprocal overlap between regions A and B, where both regions share at least 50% of 1087 

their length with one another.  1088 

(d) ≥80% reciprocal overlap between regions A and B, where both regions share at least 80% of 1089 

their length with one another. 1090 
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Extended Data Figure 2. Assay Consistency in Cross-Assay Comparisons Using Original 1092 

Laboratory-Reported Enhancer Calls 1093 

(a) Heatmaps showing the number of overlapping enhancer regions between assays under the 1094 

≥50% reciprocal overlap criterion. Each cell displays the number of enhancer regions in the row 1095 

dataset overlapping with those in the column dataset, with diagonal cells indicating the total 1096 

number of enhancer regions identified in each dataset.  1097 

(b) Heatmap presenting the Jaccard Index of each pairwise comparison between assays using the 1098 

≥50% reciprocal overlap criterion. 1099 
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Extended Data Figure 3. Schematic Representation of Binning Strategies in Genome-wide 1101 

STARR-seq Datasets 1102 

(a) Illustration of the genomic binning approach applied to ATAC-STARR-seq and WHG-1103 

STARR-seq datasets. Original STARR-seq fragments are assigned to 100-bp genomic bins using 1104 

a 10-bp sliding window, where only fragments fully covering the genomic bin are counted.  1105 
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Extended Data Figure 4. Assay Consistencies for Distal and Proximal Regions Tested 1107 

Across MPRA/STARR-seq Assays 1108 

(a) Box plot illustrating the absolute difference in overlap fraction for each pairwise comparison 1109 

between assays, distinguishing consistently active regions from those with inconsistent calls. The 1110 

absolute difference in overlap fraction quantifies sequence similarity based on relative overlap 1111 

proportions, calculated as the number of overlapping base pairs divided by the total region length 1112 

in assay A. The absolute difference between these values reflects variations in sequence length, 1113 

where lower values indicate greater sequence similarity, while higher values suggest larger 1114 

differences in sequence composition. 1115 

(b, c) Heatmaps displaying the number of overlapping tested regions between assays under the 1116 

≥1-bp overlap criterion in proximal regions (b) and in distal regions (c). Each cell shows the ratio 1117 

of the number of proximal enhancer regions in the row dataset that overlap with proximal 1118 

enhancer regions in the column dataset to the number of proximal enhancer regions in the row 1119 

dataset overlapping with proximal tested regions in the column dataset. Diagonal cells display 1120 

the total number of proximal enhancer regions identified in each dataset.  1121 
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Extended Data Figure 5. Functional Validation of cCREs and GRO-cap Elements Across 1123 

MPRA/STARR-seq Assays 1124 

(a) Stacked bar plot displaying the coverage of dELS, pELS and PLS with different levels of 1125 

overlap across LentiMPRA, ATAC-STARR-seq and WHG-STARR-seq. Overlap categories 1126 

include ≥80% reciprocal overlap, 50%-80% reciprocal overlap, and remaining overlap.  1127 

(b) Bar plot illustrating the active rates of all types of cCREs in LentiMPRA, ATAC-STARR-1128 

seq and WHG-STARR-seq, stratified by overlap extent.   1129 

(c) Bar plot showing the active rates of all regions not overlapping with any cCREs in 1130 

LentiMPRA, ATAC-STARR-seq and WHG-STARR-seq.  1131 

(d) Stacked bar plot displaying the coverage of divergent, unidirectional, and convergent 1132 

elements identified by GRO-cap, categorized by their overlap extent across LentiMPRA, ATAC-1133 

STARR-seq and WHG-STARR-seq. 1134 

(e) Bar plot showing the active rates of all types of GRO-cap elements in LentiMPRA, ATAC-1135 

STARR-seq and WHG-STARR-seq, stratified by overlap extent.  1136 

(f) Bar plot showing the active rates of regions that do not overlap with GRO-cap elements, 1137 

stratified by the presence or absence of transcription as measured by GRO-cap signals. 1138 
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Extended Data Figure 6. Influence of Transcription Levels on Cross-Assay Comparisons 1141 

on Enhancer Identification  1142 

(a, b, c,d) Heatmaps showing the number of commonly active tested regions between assays 1143 

under the ≥50% reciprocal overlap criterion with none (a), low (b), medium (c) and high (d) 1144 

transcription levels, as defined by GRO-cap signal. Each cell represents the ratio of the number 1145 

of enhancer regions in the row dataset that overlap with enhancer regions in the column dataset 1146 

to the number of enhancer regions in the row dataset overlapping with tested regions in the 1147 

column dataset. Diagonal cells display the total number of enhancer regions identified in each 1148 

dataset.  1149 
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TilingMPRA LentiMPRA ATAC-STARR-seq WHG-STARR-seq
Accession ENCSR394HXI ENCSR917SFD ENCSR363XER ENCSR382BVV ENCSR312UQM ENCSR661FOW

Fragment Size 200-bp 200-bp 200-bp 200-bp 150-bp - 800-bp 200-bp - 800-bp

Targeted Genomic Regions

Tiles in 5-bp sliding 
window along FEN1, 

FADS1, FADS2, 
FADS3 

Tiles in 50-bp sliding 
window along MYC, 

GATA1

Tiles in 100-bp 
sliding window along 

LMO2, HBE1, 
RBM38, HBA2, 

BCL11A

(1) Protein coding 
gene promoters 

centered on TSS; (2) 
Putative enhancers 

centered on non-
promoter DNase-seq 
peaks; (3) Tiles not 
overlapping with 

DNase peaks around 
GATA1, MYC, HBE1, 

LMO2, RBM38, 
HBA2, and BCL11A

Tn5-fragmented 
random fragments 

enriched in 
accessible regions

Sonicated random 
fragments genome-

wide

# DNA Replicates 4 5 5 3 6 1
# RNA Replicates 4 5 4 3 4 3

Original Fragments 
of Interests

# Assayed 42,714 95,990 91,110 232,542 1,136,262,454 
(443,451,583) 826,518,557

# Assayed in 
Forward Orientation 21,335 95,990 91,110 116,275 567,725,494 

(221,240,073) 413,361,239

# Assayed in 
Reverse Orientation 21,379 - - 116,267 568,536,960 

(222,211,510) 413,157,318

# Base Pair Covered 111,020 3,912,714 9,147,135 23,322,354 2,816,174,570 
(198,059,928) 2,814,258,311

Control Fragments
# Positive Controls - 289 290 50 - -
# Negative Controls 150 2,871 1,874 444 - -

Genomic Bins

# Assayed - - - - 557,773,387 
(44,507,595) 549,082,586

# Assayed in 
Forward Orientation - - - - 280,006,767 

(22,254,224) 276,158,685

# Assayed in 
Reverse Orientation - - - - 277,766,620 

(22,253,371) 282,923,901

% Genome Assayed - - - - 96.68% (100.00%) 96.61%
# Enhancers (Lab Reported) 13,036 17,877 14,996 87,185 53,110 38,671

# Enhancers (Merge Overlapping Regions) 121 4,419 8,379 56,840 46,906 38,671
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TilingMPRA LentiMPRA ATAC-STARR-seq WHG-STARR-seq
Accession ENCSR394HXI ENCSR917SFD ENCSR363XER ENCSR382BVV ENCSR312UQM ENCSR661FOW

Fragments/Genomic 
Bins of interests

# Tested 41,937 94,179 90,329 229,290 26,381,426 250,455,751
# Tested in Both 

Orientations 20,611 - - 113,673 10,473,380 109,842,058

Negative Controls
Source Originally assayed Originally assayed Originally assayed Originally assayed Selected from exons Selected from exons

# Tested 148 1,828 1,862 439 484,885 2,864,061
Z-score Dependent logFC Threshold 2.45 1.92 2.02 0.79 1.60 1.10

Enhancer Regions
# Either Orientation 136 2,117 3,761 25,635 25,891 79,734

# Orientation 
Independent 57 - - 16,603 11,679 25,505
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Total LentiMPRA ATAC-STARR-seq WHG-STARR-seq

dELS 35,488

No Overlap 18,002 (50.73%) No Overlap 17,837 (50.26%) No Overlap 20,472 (57.69%)

Overlap 17,486
(49.27%)

Low 1,403
(3.95%)

Overlap 17,651
(49.75%)

Low 12,065
(34.00%)

Overlap 15,016
(42.31%)

Low 10,783 
(30.38%)

Moderate 13,727
(38.68%) Moderate 4,788

(13.49%) Moderate 3,536
(9.96%)

High 2,356
(6.64%) High 798

(2.25%) High 697 
(1.96%)

pELS 41,813

No Overlap 38,673 (92.49%) No Overlap 33,509 (80.14%) No Overlap 30,671 (73.35%)

Overlap 3,140
(7.51%)

Low 480
(1.15%)

Overlap 8,304
(19.88%)

Low 6,210
(14.85%)

Overlap 11,142
(26.65%)

Low 8,427 
(20.15%)

Moderate 2,231
(5.34%) Moderate 1,864

(4.46%) Moderate 2,409
(5.76%)

High 429 
(1.03%) High 230

(0.55%) High 306
(0.73%)

PLS 20,041

No Overlap 11,875 (59.25%) No Overlap 9,673 (48.27%) No Overlap 9,459 (47.20%)

Overlap 8,166
(40.75%)

Low 1,931
(9.64%)

Overlap 10,368
(51.73%)

Low 9,150
(45.66%)

Overlap 10,582
(52.80%)

Low 7,095 
(35.40%)

Moderate 5,862
(29.25%) Moderate 1,041

(5.19%) Moderate 2,869
(14.32%)

High 373
(1.86%) High 177

(0.88%) High 618
(3.08%)

CA-H3K4me3 5,861

No Overlap 4,420 (75.41%) No Overlap 4,083 (69.66%) No Overlap 4,467 (76.22%)

Overlap 1,441
(24.59%)

Low 142
(2.42%)

Overlap 1,778
(30.34%)

Low 1,498
(25.56%)

Overlap 1,394
(23.78%)

Low 1,175 
(20.05%)

Moderate 1,119
(19.09%) Moderate 262 

(4.47%) Moderate 182 
(3.11%)

High 180
(3.07%) High 18

(0.31%) High 37
(0.63%)

CA-CTCF 28,271

No Overlap 8,302 (29.37%) No Overlap 8,961 (31.70%) No Overlap 16,340 (57.80%)

Overlap 19,969
(70.63%)

Low 839
(2.97%)

Overlap 19,310
(68.30%)

Low 13,823
(48.89%)

Overlap 11,931
(42.40%)

Low 9,817 
(34.72%)

Moderate 16,289 
(57.62%) Moderate 5,300 

(18.75%) Moderate 1,864
(6.59%)

High 2,841
(10.05%) High 187

(0.66%) High 250
(0.88%)

CA-TF 38,859

No Overlap 19,526 (50.25%) No Overlap 16,866 (43.40%) No Overlap 19,630 (50.52%)

Overlap 19,333
(49.75%)

Low 1,389
(3.57%)

Overlap 21,993
(56.60%)

Low 14,107
(36.30%)

Overlap 19,229
(49.48%)

Low 14,539 
(37.41%)

Moderate 15,318
(39.42%) Moderate 7,222

(18.59%) Moderate 4,020
(10.35%)

High 2,626
(6.76%) High 664 

(1.71%) High 670
(1.72%)

CA-only 2,958

No Overlap 2,564 (86.68%) No Overlap 2,092 (70.72%) No Overlap 2,111 (71.37%)

Overlap 394 
(13.32%)

Low 75
(2.54%)

Overlap 866
(29.28%)

Low 657
(22.21%)

Overlap 847
(28.63%)

Low 668 
(22.58%)

Moderate 216
(7.30%) Moderate 189

(6.39%) Moderate 157
(5.31%)

High 103
(3.48%) High 20

(0.68%) High 22
(0.74%)

Low-DNase 2,175,563

No Overlap 2,145,942 (98.64%) No Overlap 2,033,636 (93.48%) No Overlap 1,367,487 (62.86%)

Overlap 29,621
(1.36%)

Low 7,727 
(0.36%)

Overlap 141,927
(6.52%)

Low 95,321
(4.38%)

Overlap 808,076
(37.14%)

Low 632,056 
(29.05%)

Moderate 18,914
(0.87%) Moderate 41,922

(1.93%) Moderate 153,583
(7.06%)

High 2,980
(0.14%) High 4,684

(0.22%) High 22,437
(1.03%)
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Total LentiMPRA ATAC-STARR-seq WHG-STARR-seq

Divergent 
Elements 51,261

No Overlap 28,535 (55.67%) No Overlap 21,172 (41.30%) No Overlap 17,186 (33.53%)

Overlap 22,726
(44.33%)

Low 5,856
(11.42%)

Overlap 30,089
(58.70%)

Low 24,223
(47.25%)

Overlap 34,075
(66.47%)

Low 26,536 
(51.77%)

Moderate 12,129
(23.66%) Moderate 4,995

(9.74%) Moderate 6,219
(12.13%)

High 4,741
(9.25%) High 871

(1.70%) High 1,320 
(2.58%)

Unidirectional 
Elements 6,981

No Overlap 4,989 (71.47%) No Overlap 3,338 (47.82%) No Overlap 1,614 (23.12%)

Overlap 1,992
(28.53%)

Low 1,984
(28.42%)

Overlap 3,643
(52.18%)

Low 2,637
(37.77%)

Overlap 5,367
(76.88%)

Low 4,450 
(63.74%)

Moderate 7 
(0.10%) Moderate 923

(13.22%) Moderate 803
(11.50%)

High 1 
(0.01%) High 83

(1.19%) High 114
(1.63%)

Convergent 
Elements 4,045

No Overlap 3,231 (79.88%) No Overlap 3,134 (77.48%) No Overlap 2,856 (70.61%)

Overlap 814
(20.12%)

Low 177
(4.38%)

Overlap 911
(22.52%)

Low 796
(19.68%)

Overlap 1,189
(29.39%)

Low 997 
(24.65%)

Moderate 563
(13.92%) Moderate 101

(2.50%) Moderate 156
(3.86%)

High 74
(1.83%) High 14

(0.35%) High 36
(0.89%)
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