
Available online at www.sciencedirect.com

ScienceDirect
Current Opinion in

Systems Biology
Extracting complementary insights from molecular
phenotypes for prioritization of disease-associated
mutations
Shayne D. Wierbowski1,2, Robert Fragoza2,3, Siqi Liang1,2 and
Haiyuan Yu1,2
Abstract

Rapid advances in next-generation sequencing technology have
resulted in an explosion of whole-exome/genome sequencing
data, providing anunprecedented opportunity to identify disease-
and trait-associated variants in humans on a large scale. To date,
the long-standing paradigm has leveraged fitness-based ap-
proximations to translate this ever-expanding sequencing data
into causal insights in disease. However, while this approach
robustly identifies variants under evolutionary constraint, it fails to
provide molecular insights. Moreover, complex disease phe-
nomena often violate standard assumptions of a direct organ-
ismal phenotype to overall fitness effect relationship. Here we
discuss the potential of a molecular phenotype-oriented para-
digm to uniquely identify candidate disease-causing mutations
from the human genetic background. By providing a direct
connection between single nucleotide mutations and observable
organismal and cellular phenotypes associated with disease, we
suggest that molecular phenotypes can readily incorporate
alongside established fitness-based methodologies to provide
complementary insights to the functional impact of human mu-
tations. Lastly, we discuss how integrated approaches between
molecular phenotypes and fitness-based perspectives facilitate
new insights into themolecular mechanisms underlying disease-
associatedmutationswhile alsoprovidinga platform for improved
interpretation of epistasis in human disease.
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Introduction
Ever-improving next-generation sequencing technolo-

gies have led to the ongoing discovery of tens of millions
of DNA variants across diverse human populations [1]
and have enabled the identification of tens of thou-
sands of disease-associated mutations [2,3]. Nonethe-
less, a vast majority of these variants remain
uncharacterized and a corresponding understanding of
how these unannotated variants may contribute to
human disease and traits has yet to materialize [4].
Although numerous mutations occur in noncoding re-
gions of genomes, missense variants are of particular in-
terest to researchers since known disease- and trait-

associated mutations have been shown to be enriched
in coding regions [5]. Proper interpretation of the func-
tional impact of missense mutations, which dominate
exome sequencing datasets, remains a pivotal challenge.
Overcoming this challenge will require new tools and
approaches that better leverage large-scale sequencing
data and that take advantage of newly emerging sources
of experimentally assessed functional variant data.

Functional prediction algorithms have provided a boon
towards the identification and prioritization of disease-

associated mutations. Although early approaches to
disease association specifically prioritized rare variants,
tools such as SIFT [6e8], PolyPhen-2 [8,9], CADD
[10], and PROVEAN [11e13] have provided systematic
methods for predicting the impact of missense variants.
Other tools, such as GWAVA [14] and LinSIGHT [15],
tailor their methodology specifically to non-coding var-
iants. These approaches share a central approach that
utilizes principles of population genetics and conserva-
tion both within humans and across species as a means
of approximating the fitness cost of specific variants.
Cumulatively, these methods have been widely used in

prior identification of disease-associated mutations
[16e21]. However, while these methods continue to
persist as invaluable tools for prioritizing coding and
non-coding mutations in disease, annotations from these
tools alone do not provide insight into the underlying
molecular mechanisms of causal variants. Indeed, no
method to-date can effectively identify true risk
missense variants for human disease [22,23].
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A guiding principle of precision medicine is to accurately
measure clinical and molecular attributes of individual
patients so as to tailor personalized therapies based on
the outcomes of these measurements [24]. Considering
millions of DNA variants segregating in human ge-
nomes, and the extraordinary level of allelic heteroge-
neity found in disease, success of the precision medicine
effort hinges not only on the ability to detect disease-

causing mutations, but also to understand and properly
assess the functional consequences of these mutations.
A major challenge, therefore, is to radically accelerate
the pace of experimental and computational assess-
ments of the functional impacts of millions of single
nucleotide variants (SNVs) uncovered by sequencing
efforts. Direct assessments of molecular phenoty-
pesdsuch as impact on protein stability, enzymatic ki-
netics, or binding efficiencies by missense mutations or
gene regulatory impacts by non-coding muta-
tionsdprovide a unique and complementary perspec-

tive to current methods for detecting causal disease
mutations. Integrating molecular phenotype data into
fitness-based approaches for identifying deleterious
mutations may also provide new insights into how causal
mutations mechanistically function and provides a
framework for dissecting epistatic relationships that
modulate the impact of low penetrance mutations.
Caveats to fitness-based methods
Long-standing computational methods rooted in
approximating fitness effects have provided consider-
able headway towards the identification of disease-
causing mutations on genome-wide scales. However,
carving out the path for future innovation in variant
prioritizationdand moreover mechanistic inter-
pretationdnecessitates an awareness of the limitations
and caveats surrounding the current methods. Indeed,

despite their widespread use, current algorithms often
perform poorly in clinical settings and seldom result in
measurable phenotypes. For example, Miosge and col-
leagues examined 33 de novo missense mutations
occurring in essential immune system genes in mice
found that only 20% of mutations predicted to be
deleterious by PolyPhen-2 resulted in discernible phe-
notypes in mice homozygous for the de novo mutations
tested [25]. A more recent study expanded the scope of
this genotype-phenotype by inducing 116,330 random
ENU mutations in mice. Their results showed that

among missence mutations scored as "probably
damaging" by PolyPhen-2, only 17% resulted in
discernible phenotypes in mice homozygous for the
tested mutation [26]. Similar limitations for variant
annotation algorithms were reported for a set of 236
clinically-relevant BRCA1/2 mutations [27]. Implicit
biases in the training sets used to develop variant
annotation algorithms [28,29], including limited sensi-
tivity to disease-associated common variation [30], as
well as high false positive rates across classifiers [25e
Current Opinion in Systems Biology 2018, 11:107–116
27,31] may contribute to the limited accuracy of these
methods to predict organismal phenotypes. Moreover,
variant annotation algorithms provide little to no
mechanistic insight as to how a predicted deleterious
variant may function. This information is critical for
developing targeted hypotheses and clinical strategies
to target causal mutations.

Variant annotation algorithms have limited sensitivity
to disease-associated common variants
Variant annotation algorithms vary greatly in their ap-

plications as do the methodologies that drive their
predictions. Briefly, algorithms specific to coding varia-
tion, including PolyPhen-2 [8,9] and Mutation Taster
[102], use various protein structure- and nucleotide-
based databases to generate multiple sequence align-
ments for evaluating conservation of examined coding
sites. Ultimately though, the breadth of disease-
associated mutations represented in their training sets
largely determines whether a variant annotation algo-
rithm classifies a mutation as deleterious or not [32].
Biases and errors in these training sets can therefore

limit the sensitivity of these tools to accurately detect
deleterious variants [28], as can limited sensitivity for
variants involved in complex, non-Mendelian disease
[33]. In general, the lower the allele frequency of a
variant, the more likely a variant annotation algorithm is
to score it as deleterious [29]. As a result, variant
annotation algorithms also underperform in detecting
disease- and risk-associated mutations that occur at
common allele frequencies [30,33].

Given the conceptual framework of identifying causal

variants through fitness effects, and the historic
emphasis of previous studies on highly penetrant,
Mendelian diseases, underperformance detecting these
deleterious common variants is logical. Though purify-
ing selection should limit the capacity of truly delete-
rious variants to achieve common allele frequencies
(MAF > 1.0%), the probability of such variants reaching
high allele frequencies is never zero; particularly if the
variant affects a trait minimally associated with repro-
ductive fitness. Indeed, several examples of clinically-
relevant, disease-associated variants at common allele

frequencies follow this pattern. For example, gene
dosage effects from the apolipoprotein E type 4 allele
(MAF = 18.4%) increase Alzheimer’s disease risk by
20e90% [34e36]. Likewise, carriers of the P12A poly-
morphism of PPARG (MAF = 11.0%) are significantly
more likely to develop type 2 diabetes [37,38]. Similar
examples of common variants (MAF > 1.0%) that result
in or modulate disease risk are detailed in current
literature [24,39e51] and briefly summarized in
Table 1. Notably, only one of these listed disease-
associated mutations scores as “probably damaging” by

PolyPhen-2 while only a handful of cases are scored as
“deleterious” by SIFT (Table 1). Moreover, functional
www.sciencedirect.com
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mutations at common allele frequencies, including
R543Q and C282Y mutations in F5 [52,53] and HFE
[54e57] respectively, represent disease mutations with
incomplete penetrance (Table 1). Despite strong evi-
dence linking these mutations to disease risk [52e57], a
majority of carriers of these variants do not develop their
associated diseases [58]. While there is evidence
suggesting that many of these mutations may be anno-

tation errors or artifacts of association studies [59,60],
partially penetrant disease-associated mutations, none-
theless, still modulate disease risk. The current frame-
work for variant annotation is evidently ill-suited to
discern variants associated with subtle effects. Yet
characterizing precisely these mutations will be crucial
toward understanding how an individual’s genetic
background determines their risk for particular diseases
and influences complex traits.

High discordance between variant annotation
algorithms
In practice, researchers incorporate multiple variant
annotation algorithms to identify putatively functional

mutations from whole-exome/genome sequencing data;
however, discordance between the results of these al-
gorithms is high. Indeed, a study that applied seven
different variant annotation algorithms to data from the
Exome Sequencing Project found that 47% of nonsy-
nonymous variants were predicted to be functional by at
least one algorithm while only 1% of nonsynonymous
variants were scored as functional by all seven annota-
tion tools [31]. Large discrepancies were also observed
between variant annotation algorithms when applied to
phenotype-associated mutations and were each sug-

gested to greatly overestimate the damaging effect of
Table 1

A curation of the literature highlights several disease-associated vari
(MAF > 1.0%). These variants exhibit lower selection pressure than m
phenotype, exemplifying the confounding that occurs when using fitn
Indeed, two common variant annotation algorithms, PolyPhen-2 and
with their highest functional annotations.

Gene Mutation ExAC MAF rsID PolyPhen-2 score

APOE C130R 18.40% rs429358 Benign
ARMS2 A69S 25.50% rs10490924 Possibly damaging

BTD D444H 3.20% rs13078881 Benign
CFH Y402H 32.80% rs1061170 Benign
COL4A2 E1123G 1.70% rs117412802 Possibly damaging
F5 R543Q 2.20% rs6025 Benign
HFE C282Y 3.20% rs1800562 Probably damagin
INHA A257T 2.40% rs12720062 Benign
PPARG P12A 11.00% rs1801282 Benign

PRSS1 A16V 1.60% rs202003805 Benign
TRIM22 R321K 3.00% rs12364019 Possibly damaging
TRIM22 S244L 1.40% rs61735273 Possibly damaging

www.sciencedirect.com
their predicted functional mutations [26]. A “majority
rule” criteria in which at least four of seven variant
annotation algorithms must score the variant as func-
tional for the variant to be considered deleterious can
instead be applied [3,31], but false negative rates are
presumably very high when combining the results from
distinct variant annotation algorithms in this manner.
The distinct datasets and annotation sources used to

develop each of these variant annotation algorithms can
be used instead to train a single support vector machine
for predicting putatively functional alleles, as developed
for CADD [10]. Nonetheless, despite impressive clas-
sification accuracy, CADD achieved only a 15% success
rate when applied to the aforementioned set of 33 de
novo missense mutations in essential immune system
genes studied by Miosge and colleagues [25].

Variant annotation algorithms alone provide limited
mechanistic insights
Mutations can perturb cellular activity in multiple ways.
In particular, disease-associated missense mutations
often function by disrupting proteineprotein in-

teractions [61e63], destabilizing protein folding
[61,62], or altering transcription factor activity [64,65].
Understanding the molecular mechanisms through
which disease-associated mutations function is impera-
tive for developing clinical strategies to treat their
corresponding phenotypes and for drug target assess-
ment [66,67]. In spite of this importance, only a single
widely used variant annotation algorithm for coding
variants, MutPred2 [68], currently evaluates the
possible mechanisms by which mutations scored as
deleterious may function. More precise predictions for

deleterious variants and better insights to their
ants occurring at unexpectedly common minor allele frequencies
ay be anticipated given their well-studied connections to disease
ess driven perspectives to explain and detect disease mutations.
SIFT, have infrequently labeled these known functional mutations

SIFT score Disease Citation

Tolerated Alzheimer’s disease [34–36]
Deleterious
(low confidence)

Age-related macular degeneration [39,40]

Deleterious Partial biotinidase deficiency [41,42]
Tolerated Age-related macular degeneration [43–45]
Unscored Haemorrhagic stroke [46]
Tolerated Factor V Leiden [52,53]

g Deleterious Hemochromatosis [54–57]
Tolerated Premature ovarian failure [47–49]
Deleterious
(low confidence)

Type 2 diabetes [37,38]

Tolerated Chronic pancreatitis [50,51]
Deleterious Inflammatory bowel disease [24]
Deleterious Inflammatory bowel disease [24]
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corresponding molecular mechanisms may be achieved
through improved structural databases to detail where
missense mutations physically occur with respect to
protein interface residues [69,70]. Similar database
improvements may also apply to variant annotation al-
gorithms that also score noncoding mutations, for
example fitCons [71] which evaluates patterns of poly-
morphisms and genetic divergence to estimate the

“fitness consequence” of point mutations genome-wide.
However, fitCons, heavily depends on the accuracy of
functional elements identified by ENCODE [72].
Recently developed sequence co-variation approaches
to predicting the effects of DNA variants bypass
dependence on structural feature or functional
noncoding annotations [73]; however, mechanistic in-
sights as to how these epistatic dependencies emerge
are not provided. As such, integrating structural and
functional information from these datasets can provide
improved and complementary insights to the molecular

function of predicted deleterious mutations.
Molecular phenotypes: an orthogonal
framework
In assessing the impact of human variants, we highlight

the importance of distinguishing three related yet
distinct biological concepts: overall fitness, organismal/
cellular phenotype, and molecular phenotype
(Figure 1). Overall fitness refers to the ability of an in-
dividual to survive and reproduce. Organismal pheno-
types refer to observable features, including disease
phenotypes such as diabetes, autism spectrum disorder
and cancer, or traits such as height, hair color and blood
type. Molecular phenotypes refer to the direct effect of
a variant at the molecular level. For example, changes in
gene expression, loss of protein stability, changes in
enzymatic activity, or modifications to proteineprotein,
protein-DNA or protein-ligand interaction affinities.

All human genetic variation separates into molecularly
inert or molecularly active variants depending on
whether or not each variant causes a molecular
phenotype. While not all molecular phenotypes
contribute directly to observable organismal pheno-
types, organismal or cellular phenotypes are largely
derived in molecularly active variants; and hence must
be directly mediated through one or more molecular
phenotypes. Likewise, overall fitness is always rooted in

molecular phenotypes since molecular changes modu-
late the ability of the organism to perform various
functions necessary for survival and reproduction. In
principal, all organismal phenotypes associate with a
fitness value ranging from deleterious, to neutral, to
advantageous. While there is a direct relationship be-
tween organismal phenotypes and fitness, this rela-
tionship is not always clearly defined, particularly in
specialized fields of disease research dealing with
cancer biology, age or post-reproductive related
Current Opinion in Systems Biology 2018, 11:107–116
diseases, and complex diseases with reduced pene-
trance [74]. In such disease studies, the one-to one
correspondence between fitness score and the severity
of the organismal phenotype breaks down since clini-
cally deleterious phenotypes can have limited impact
on reproduction. Molecular phenotypes can be indis-
pensable towards characterizing these cases of ambig-
uous fitness-to-phenotype relationships.

Molecular phenotypes provide complementary
information for identifying causal variants
Whereas most approaches leverage the link between
fitness effects and organismal/cellular phenotypes, an
alternative framework rooted in molecular phenotypes
provides an orthogonal line of support. At least two de-
grees of separation lie between disease phenotypes
caused by particular variants, the fitness effects of these
variants, and our ability to discern these effects. By
contrast methods aimed at molecular phenotypes
directly address the central link. The combination of
these two rationally justified, yet conceptually distinct
paths connecting SNVs to disease phenotype is ex-

pected to culminate in an overall higher degree of ac-
curacy in predicting disease associations. The
availability of data and library of tools for assessing mo-
lecular phenotypes are currently leagues behind the
equivalent datasets for fitness-based approaches.
Therefore, it is likely that established conservation and
fitness-based methods will remain a valuable step in
prioritizing variants, while more direct support from the
orthogonal molecular phenotype data should serve as
strong confidence in the accuracy of these results.

For instance, a recently developed interaction pertur-
bation framework leveraged annotations of proteine
protein interaction (PPI) interface residues [70]
alongside PolyPhen-2 scores [75]. Chen and col-
leagues demonstrated increased accuracy in distin-
guishing de novo risk variants in autism spectrum
disorder from benign mutations in unaffected siblings.
Figure 2A provides a reconstructed example in which a
proband PolyPhen-2 mutation scored as “probably
damaging”, P375L on the protein RARA, occurred on a
predicted interface residue. In contrast, a second

PolyPhen-2-scored “probably damaging” mutation,
R83H on the same RARA protein, was reported in an
unaffected individual; however, R83H did not occur on
a predicted interaction interface residue. Conse-
quently, despite matching PolyPhen-2 prediction, only
the proband P375L mutation was predicted to disrupt
the heterodimeric interaction between RARA and
RXRB, a prediction which the authors also validated
experimentally. This exemplifies the potential for mo-
lecular phenotypes to aid in pinpointing candidate
causal variants that are otherwise indistinguishable

from molecularly inert variants using fitness-based
methods alone.
www.sciencedirect.com
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Figure 1

Graphical depiction of the relationship between three related biological concepts associated with human variations: 1) molecular phenotype, 2) organ-
ismal/cellular phenotype, and 3) overall fitness. All genetic variation is either molecularly inert or molecularly active. The cumulation of all molecularly
active variants—each causing one or more molecular phenotypes—constitutes the unique genetic background of an individual. Molecular phenotypes
provide the ultimate link explaining the mechanistic basis for how SNVs manifest in organismal/cellular phenotypes or come to be selected for or against
through fitness effects. Although organismal phenotypes, in general, directly relate to overall fitness, weak effect diseases, late onset/post-reproductive
diseases, and partially penetrant mutations often confound this relationship. Researchers have various tools to perform direct inquiries into how these
three concepts relate to specific molecularly active variants. Human disease research aims to understand organismal/cellular phenotypes while popu-
lation genetics provides insights into fitness, conservation, and selection. Researchers investigate molecular phenotypes either through direct experi-
mental assays to observe underlying molecular phenotypes or through computational predictions of putative molecular phenotypes. The ultimate aim is to
infer information about one point of the triangle through the other two; namely, scientists seek to infer which SNVs are causal disease variants though
information about the overall fitness or molecular phenotype effects of the SNV.

Using molecular phenotypes to prioritize causal variants Wierbowski et al. 111

www.sciencedirect.com Current Opinion in Systems Biology 2018, 11:107–116

www.sciencedirect.com/science/journal/24523100


Figure 2

Molecular phenotypes including the annotation of protein–protein interaction interface residues can inform the mechanism of disease-associated mu-
tations. A. Homology model between RARA (template 1DKF:B) and RXRB (template 1DKF:A) used to distinguish a potentially causal mutation from a
benign mutation. A de novo mutation, P375L, on RARA identified in an autism spectrum disorder-affected individual occurs on an interface residue with
RXRB. RARA interface residue mutations were not found in an unaffected sibling. B. Homology model between VHL (PDB 4WQO:A) and ELOC (PDB
4WQO:C) demonstrates potential leveraging of molecular phenotypes to identify convergent mechanisms in divergent disease mutations. Variants on
both of these proteins associate with the same disease and localize to the same interface. C. Homology model between BMP4 (template 1REW:B),
BMPR1A (template 1REW:A), and BMPR1B (template 3VES:C) shows hypothesis-driven differentiation of mechanisms of different diseases based on
molecular phenotype. Two variants on BMP4, A346V, and W325C, associated with divergent diseases localize to distinct interaction interfaces.
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Leveraging molecular phenotype approaches
towards disentangling molecular mechanisms of
causal variants
The molecular phenotype framework provides clear
potential to investigate the underlying mechanisms

behind how variants manifest in disease phenotypes.
Since the specific molecular defect associated with a
variant often directly relates to the disease phenotype,
identification of candidate variants based on molecular
phenotype annotations should enable translational
studies for disease etiology. The further development of
methods to approximate and predict molecular pheno-
types will facilitate the development of actional hy-
potheses to direct future research.

For instance, Chen et al. used experimentally derived

and computationally predicted annotations of protein
interaction interface residues [75] as a predictor for the
molecular phenotype, loss of PPI. In addition to
distinguishing a true autism risk variant, P375L, from
other “probably damaging” variants, the additional
knowledge that this variant intersected with the RARA-
RXRB interaction interface (Figure 2A), led to the
testable hypothesis that this variant would disrupt this
interaction, and helped to propose a pathway for RARA’s
involvement in autism spectrum disorder through this
interaction [75].
Current Opinion in Systems Biology 2018, 11:107–116
Extending the interface residue approximation for the
loss of PPI molecular phenotype facilitates mechanistic
inferences in other cases as well. This approach may be

generalized to cases involving variants across both faces
of an interface (Figure 2B). Corroborating cross-
interface evidence may strengthen the hypothesis that
disease-associated mutations function through disrup-
tion of a specific interaction and helps categorize
distinct variants associated with the same disease by
similarities in their molecular mechanisms. Figure 2B
shows a known tumor suppressor gene-encoded protein,
VHL [76,77] with a mutation, L158Q, associated with
renal cell carcinoma, in complex with an elongation
factor, ELOC. The localization of L158Q at the ELOC

interface, suggests that the disease may function
through disruption of the VHL-ELOC interaction.
Moreover, ELOC contains several mutations on the
same protein interaction interface, Y79F, Y79N, and
Y79S, which are also associated with renal cell carci-
noma, solidifying the hypothesis that these cross-
interface variants drive a distinct form of renal cell car-
cinoma through a single shared molecular phenotype.

Understanding the molecular phenotypes caused by
certain disease-associated mutations may further eluci-

date how several mutations on the same gene can
associate with different diseases. For instance, two
www.sciencedirect.com
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missense mutations found on the protein BMP4, A346V
and W325C, are associated a developmental defect,
orofacial cleft 11, and colorectal cancer respectively e
two clinically distinct diseases. The homology models
provided in Figure 2C demonstrate that these variants
localize to opposites ends of the BMP4 structure and
occur at distinct proteineprotein interaction interfaces.
These insights suggest these distinct disease pheno-

types may manifest through divergent pathways related
to the biological functions of their distinctly targeted
interaction partners. Indeed, although BMPR1A and
BMPR1B are paralogous, previous studies have linked
them to unique functions and disease states [78,79].

Cumulatively, these interaction perturbation examples
demonstrate how molecular phenotypes contribute to
elucidation of disease etiology. We emphasize the po-
tential to explore similar mechanistic hypotheses uti-
lizing molecular phenotypes outside of PPI disruption.

Recent studies have highlighted the value of examining
other molecular phenotypes, including changes in pro-
tein stability [80,81] as well as changes in gene
expression level [82,83], to unravel the pathogenic
mechanisms of both coding and non-coding mutations.

Molecular phenotypes help dissect genetic epistasis
and clear the path towards precision medicine
The combination of all molecularly active variants and
their corresponding molecular phenotypes constitutes
the genetic background that defines an individual
(Figure 1). Frustratingly, some molecular phenotypes
may never produce discernible organismal phenotypes,
while others may do so only in the presence of specific,
often unknown combinations of complementary mo-

lecular phenotypes. Indeed, recent studies in multiple
organisms and human cell lines have identified complex
pairwise, and even multi-way intertwinement by which
deficits in individual genes affect organismal/cellular
phenotypes and fitness [84e86]. The complex behavior
of genetic epistasis has been a major roadblock to
establishing causal relationships between genetic vari-
ants and human disease. However, there is no epistasis
at the molecular level when examining molecular phe-
notypes of variants. Therefore, particularly compared to
fitness effects which may be completely masked by
epistasis, the ability to record or predict concrete mo-

lecular phenotypes associated with otherwise silent
variants will prove crucial towards dissecting epistasis.

Molecular phenotype-based studies aimed at bridging
this disconnect will carry immediate implications in
precision medicine. On one front, leveraging molecular
phenotype information to interpret the individual’s ge-
netic background is vital for deciphering variations
among disease risk and drug response/toxicity among
the human population. For example, Young et al. have
elucidated how multiple SNVs on SORL1 affect BDNF-

induced SORL1 expression in neuronal cells,
www.sciencedirect.com
contributing to risk for Alzheimer’s disease [87]. More
recently, Cheng-Hathaway et al. have uncovered the
expression-reducing molecular phenotype of another
variant, R47H on TREM2, that also increases risk of
Alzheimer’s disease [88]. Additionally, a study by
Hauser et al. demonstrated that multiple variants on
GPCR receptors impact drug response via a variety of
molecular alterations, including reduced or increased

onset kinetics and altered G-protein-binding specificity
[89]. By providing a means to identify and evaluate
functional effects at a molecular resolution, these
studies help disentangle the links between human ge-
netic variation and personalized disease risk assessment.

On another front, knowledge of molecular phenotypes of
diseased tissue, especially in cancer, provides direct
guidance on population-wide treatment for specialized
types of disease. Tumor subtyping based on mRNA
expression, protein expression, and epigenetic profiles

[90e94] has already been widely used for making
therapeutic decisions. A complementary effort in a
recent study identified master regulators for metastatic
progression of gastroenteropancreatic neuroendocrine
tumors across four distinct subtypes, allowing prioriti-
zation of compounds based on patient-specific master
regulator activity [95]. Harnessing molecular pheno-
types that modulate both the genetic background and
the disease state of an individual will significantly
improve the efficacy of disease prevention, diagnosis,
and treatment in a personalized manner.
Conclusion
The incorporation of direct assays for molecular phe-
notypes and novel computational methods that
approximate molecular phenotypes in the continued
efforts to identify, prioritize, and understand causal

variants in human disease is positioned to provide a truly
orthogonal view to the longstanding fitness-based
approach. Whereas current variant annotation algo-
rithms rooted in sequencing and fitness approximations
have yielded suboptimal specificity, novel methods
directed at molecular phenotypes aim to extract com-
plementary molecular insights otherwise unavailable.
Towards these ends, researchers have conducted high-
throughput assays to directly measure the functional
impact of thousands of disease-associated missense
mutations on proteineprotein interactions [61,62],

protein stability [61], and DNA binding [64,65]. Liter-
ature curation efforts by the IMEx Consortium have
provided protein interaction perturbation data corre-
sponding to nearly 8,000 coding mutations in humans
[96]. Continued development of high-throughput
approachesdincluding deep-mutational scanning pipe-
lines capable of probing nearly the entire mutational
landscape of targeted proteins [97e100]dwill provide
an ever-larger resource of functional mutation data. This
data will help elucidate the biochemical and
Current Opinion in Systems Biology 2018, 11:107–116
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evolutionary properties that differentiate truly
damaging mutations from those that are benign.

Despite the impressive scale that high-throughput
experimental pipelines have achieved [61,62,98], no
experimental pipeline alone can keep pace with the rate
of sequence variant discovery, highlighting the need for
continued development of computational approaches

and variant annotation algorithms. A comprehensive
effort to integrate these sources of experimentally veri-
fied molecular phenotypes as labels to further train
widely used fitness-based models will be key to
improving their accuracy and clinical application, but
remains as of yet unimplemented. Orthogonally, we also
emphasize the continued need to develop novel algo-
rithms distinct from the fitness paradigm that make
direct predictions about putative molecular phenotypes.
For instance, interaction interface residue annotations
provide useful mechanistic insights, but low coverage in

experimentally validated structures or homology models
has limited their applicability. The recently published
Interactome INSIDER resource provides a method to
predict interface residuesdand consequentially loss of
PPI phenotypesdin the absence of structural informa-
tion [70]. MutPred2 enables a combination of ap-
proaches, making predictions both for overall functional
effect and prioritized potential mechanisms of action
[68]. Recently, Wagih et al. have released MutFunc, a
resource that aggregates and interprets several previouse
datasets and algorithms to provide precomputed pre-

dictions for nearly every possible variant in Homo sapiens,
Saccharomyces cerevisiae, and Escherichia coli. These pre-
dictions include estimates for changes to protein stabil-
ity, protein interaction interfaces, post translational
modifications, and transcription factor binding among
other approximations for molecular phenotypes [101].
Advances in this realm of widespread predictors for
specific molecular phenotypes that can prioritize targe-
ted assays to validate the veracity of those phenotypes
will prove crucial to ensure researchers can maintain up-
to-date annotations of molecularly activate variants.
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