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Microarray experiments are provid-
ing a huge amount of genome-wide
data on gene expression. Many prior
expression analyses have focused on
inferring  functional relationships
(1-7); however, the quality control and
normalization of the raw data that re-
sult from microarrays have received
less attention. Here we address a sys-
tematic error that arises from microar-
rays and discuss current methods to re-
solve the problem.

It is well known that the data from
high-throughput experiments embody
a significant component of measure-
ment error that must be removed be-
fore any analysis can be applied to the
data. An intuitive idea is to repeat the
experiments and decrease the noise by
averaging the measurements from
replicates (8). Unfortunately, microar-
rays are still difficult to repeat; in most
cases, researchers do not have many
replicates for analysis. A Bayesian
probabilistic approach has been pro-
posed to address the problem of the
small repetition number for microarray
experiments (9). While random error
can be canceled by replicate experi-
ments, systematic error will not dimin-
ish by averaging replicates. For exam-
ple, a notorious systematic error in
microarray experiments is that the ex-
pression ratio of a particular gene at
different conditions is a function of its
absolute expression levels. If one uses
a simple fold-change cut off, then the
genes with low expression levels tend
to numerically meet the given cut off,
even though they are not truly differen-
tially expressed. Different methods
have been proposed to deal with this
problem (10-15).

In this review, we want to direct at-
tention toward a type of systematic er-
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ror that is manifested by the strong in-
teraction between neighboring spots on
the array. If the replicate experiments
are performed on the arrays with same-
chip geometry, then these interactions
will not be canceled by the replicates.
We will first demonstrate this noise via
a case study, and then we will discuss
the possible source of these artifacts.
Finally, we will discuss current meth-
ods to solve the problem, in particular,
a local averaging approach called stan-
dardization and normalization of mi-
croarray data (SNOMAD) (16). We
examined several different yeast mi-
croarray data sets: diauxic shift, a-fac-
tor-arrested cell cycle, cdcl5-arrested
cell cycle, and cdc28-arrested cell cy-
cle (17-19).

To demonstrate the systematic error
in the microarray data, we offer the fol-

lowing evidence. The relationship be-
tween gene expression and physical
chip distance can be revealed by com-
paring the chip distance map (Figure
1A) to an expression correlation coeffi-
cient map (Figure 1B). The horizontal
and vertical axes of these two maps rep-
resent the positions of the genes along a
chromosome. The colors on the dis-
tance and correlation maps represent
the chip distance and expression corre-
lation coefficient between gene pairs,
respectively. Interestingly, the highly
correlated gene expression regions
(Figure 1B, red blocks) always corre-
spond to the short chip distance regions
(Figure 1A, red blocks), indicating that
the observation of two genes to be co-
expressed could be mainly due to their
short physical distance on the chip.

We also calculated the average cor-
relation coefficient of gene expression
profiles as a function of the physical
chip distance between two genes. Fig-
ure 2 shows the result for a microarray
data set of the yeast o-arrested cell cy-
cle. Without an artifact, the average
correlation coefficient should be inde-
pendent of the chip distance. However,
Figure 2 shows that the closer two
genes are on the chip, the higher their
average correlation coefficient is. This
indicates that this data set contains a
large proportion of artifacts. Actually,
this phenomenon is not unique to
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Figure 1. Distance map and expression correlation coefficient map. Both maps are produced using
the yeast o-factor-arrested cell-cycle data set, whose x-axis and y-axis represent the first 100 open read-
ing frames on chromosome IV. (A) Distance map. The color on each spot represents the distance between
the gene on the x-axis and the gene on the y-axis. (B) Expression correlation coefficient map. The color
represents the correlation coefficient between the gene pair. The color codes are to the right of the maps.
For a detailed analysis, please refer to Yu et al. (manuscript in preparation).
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microarrays; we performed the same
calculation on cell-cycle data from the
GeneChip® (Affymetrix, Santa Clara,
CA, USA) (1) and obtained similar re-
sults with respect to the artifact.

For microarray experiments, there is
yet additional evidence for an artifact.
In the cell-cycle experiments, re-
searchers measured the gene expres-
sion ratio between the different cell-cy-
cle stages, using asynchronous cultures
of the same cells as a control sample.
This control sample is labeled by
Cy™3 (green). Ideally, the expression
profiles of green signal for all genes
should be proportional. Thus, the aver-
age correlation coefficient for the green
signal should be 1. However, according
to Figure 3, we found a pattern similar
to that of Figure 2. This is a clear mani-
festation of an artifact.

From this analysis, we can see that
the artifact phenomenon is significant
and exists in many chips. Thus, the ar-
tifact must be taken into account before
any conclusion can be drawn based on
the raw, uncorrected expression data.
The following is an example of what
we just stated. A naive analysis of o.-
factor-arrested yeast cell-cycle data
suggests that chromosomal spatial or-
ganization affects gene expression in a
systematic way, as displayed in the dis-
tribution of highly correlated gene pairs
as a function of the relative pair chro-
mosomal distance. The figure shows
that (/) adjacent gene pairs tend to have

high correlation coefficients, which is
consistent with findings by Cohen et al.
(20), and (if) genes that are not in the
same vicinity on the chromosome are
more likely to be co-expressed if their
spacing is a multiple of 22 open read-
ing frames (ORFs) in microarray ex-
periments. Given the fact that many
chips, including this particular microar-
ray, are printed according to a simple
transformation of the gene order on the
chromosome, the observed long-range
correlation could be associated with an
inherent chip artifact.

The source of the artifact is un-
known, but it might be related to the
following processes or their combina-
tions: (i) the spotting of DNA probes
on the chips; (ii) plate effects; (ii7) the
washing of cDNA after hybridization;
(iv) cross hybridization; or (v) image
scanning. The effect of spotting of
DNA probes on the chip is also called
print tip effect. A systematic difference
may exist between the print tips and
lead to spatial bias between the sectors
on the chip. The analysis of variance
(ANOVA) method (11) or MA-plot
(19) allows for the detection of this spa-
tial bias, and a lowess normalization
approach was proposed to correct the
systematic bias (15). The plate effect
originates from PCR amplification bias
between different plates. This effect
would also introduce further variability
in the measurement of gene expression.
Nonspecific probes were used to cor-

rect the effect, based on the assumption
that DNA concentration results in this
bias. All these effects are not easy to
separate. Furthermore, some of the as-
sumptions, such as equal variance be-
tween different sectors, may be invalid.
This makes the detection and correc-
tion of these effects even more difficult.

It would be most desirable, of
course, to completely correct for the ar-
tifact after determining its source.
However, in practice, it is difficult to
correct for all the spatial bias. For ex-
ample, Yang’s normalization method is
able to correct the spatial artifact due to
print tips (15). However, the unit cor-
rected here is the chip “sector” (or
block), and this is a rather coarse divi-
sion; the spatial bias from other sources
may still exist within sectors after
Yang’s sector-based normalization. We
believe that even without fully under-
standing the source of the problem, re-
searchers are still able to improve the
signal quality.

Here we discuss a popular method
of “spatial lowess” in detail (16). This
local normalization method allows for
the detection and/or correction of spa-
tially systematic artifacts in microarray
data without exactly attributing the arti-
facts to certain sources. We applied the
method from Colantuoni et al. (also
called SNOMAD) (16) to the o-factor-
arrested yeast cell-cycle data and found
that their method reduced the artifact
effect but failed to remove it complete-
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Figure 2. Average correlation coefficient distribution as a function of the
distance of gene pairs on the chip. The distance between genes is measured

in terms of the number of spots on the chip. This distribution is calculated us-
ing the o-factor-arrested cell-cycle data set. The black line is the distribution
for the raw data. The red line is the distribution for the data after the standard-
ization and normalization of microarray data (SNOMAD). The green line is

the distribution for the data after deconvolution.
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Figure 3. Average correlation coefficient distribution for green signals. The
black line is the distribution for the raw data. The red line is the distribution for
the data after the standardization and normalization of microarray data
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ly. The red line in Figure 2 shows the
average correlation coefficient as a
function of the chip distance after local
normalization. Apparently, the problem
is diminished when we compare the sit-
uation before the normalization, as
shown by the black line in Figure 2.
Figure 4 shows the self-correlation of
genes that were printed twice on the
chip. Without the normalization proce-
dure, the mode of the distribution of all
self-correlations is approximately 0.1,
whereas, in an ideal situation, it should
be 1. The application of SNOMAD
drives this distribution to the right, with
a slightly higher mode at 0.15, which is
evidence that SNOMAD improves data
quality. The red line in Figure 3 shows
that after local normalization, the pair
correlation function of the green sig-
nals is still not homogeneous, which
means the method cannot remove the
artifact completely. Surprisingly, it
even produces correlation coefficients
between green signals close to 0. These
correlations should ideally be 1 be-
cause we only use local normalization
when we processed the green signals
using SNOMAD. The results are simi-
lar for several normalization methods
(data not shown). An important as-
sumption of SNOMAD is that the arti-
fact is isotropic on the chip, which is
actually untrue in most cases. For ex-
ample, we calculated the distribution of
the average correlation coefficient for
all the gene pairs in the same rows and

a similar distribution for those pairs in
the same columns. Figure 5 shows the
results for a-factor-arrested yeast cell
cycle, and it is clear that the artifact
along the x-axis is quite different from
that along the y-axis.

We propose a deconvolution ap-
proach to address the artifact problem
in chip experiments. This is actually
more of a general approach than local
normalization and may be able to take
into account anisotropic effects. We as-
sume that for each sample indexed by
the letter ¢, the measured signal ¢ at a
chip location ¥’ = (x,y) can be expressed
as a convolution of the true signals

Y 90 =S Y (-1,
where the deviation of ¢ from a  func-
tion represents the extent of the chip ar-
tifact. (Note that v/ is the ratio of the
red and green channels.) Thus, neigh-
boring and non-neighboring spots af-
fect the signal measured at the point X.
According to the convolutron theorem,
the Fourler transform of ¢/(xY) is given
by q)’(k )= c® )l//’(k ). Because the true
signals ' and the envelope c(k ) that
represent the artifact are unknown we
1nspect the artrfact free ratlos R’(k )=
PEN YK = l//(k )/ |7 “(K) for all sam-
ples ¢, where ¢" (k) is some reference
measurement, such as the average of
¢ (k ) across all samples A prehmmary
result from this idea is illustrated in
Figure 2, where we show average cor-
relation coefficients as a function of the

physical distance of gene pairs on the
chip. These distributions were calculat-
ed using an o-factor-arrested cell-cycle
data set. Clearly, SNOMAD fails to re-
move all the artificial components in
the expression profiles. On the con-
trary, the distribution after our pro-
posed deconvolution method is no
longer distance-dependent. The inverse
Fourier transforms of these ratios, de-
noted by R’(x ), have no straightforward
biological interpretation. Nevertheless,
under the assumption that the convolu-
tlon model is adequate, substitution of
q)’(x ) for these ratios and application of
the above three pieces of evidence (de-
signed to reveal the artifact) allow us to
diminish chip artifact effects.

To understand the effect of the chip
artifact, we propose printing a unique
sequence in each spot of the array. Hy-
bridization with the corresponding
cDNA will allow us to study the spatial
variations of the red and green signals
and their ratios, where the dyes repre-
sent two distinct or equivalent cDNA
samples. Replicating this experiment
using different spot spacing will allow
us to study the spot-to-spot interaction
effect and the associated correlation
length. To remove the spatial variation
effect, we propose a variant of this ap-
proach. Instead of printing a unique se-
quence at each spot, one can link it to
each of the DNA targets. The red chan-
nel can then be assigned to the mRNA
samples, and the green channel can be
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Figure 4. Distribution of correlation coefficient for the duplicated genes.
The x-axis represents the correlation coefficient between a duplicated gene pair.
The y-axis represents the number of duplicated gene pairs. The black line is the
distribution for the raw data, and the red line is the distribution for the data after
the standardization and normalization of microarray data (SNOMAD).
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Figure 5. Average correlation coefficient distributions along the x-axis and
y-axis on the chip. The distributions are calculated using the raw o-factor-ar-
rested cell-cycle data set. The black line is the distribution along the y-axis, and
the red line is the distribution along the x-axis. C.C., correlation coefficient.

Vol. 35, No. 1 (2003)



BENCHMARKS

assigned to the unique sequence. By
applying the same amounts of the sin-
gle-sequence cDNA (green dye) and
sample cDNA (red dye) and normaliz-
ing the signal of the red channel by the
green channel signal, one can partially
remove the chip artifact (because this
normalization also transforms the green
signal to a constant value at all spots).
Moreover, these ratios are proportional
to mRNA concentration. Thus, one can
compare expression levels between dif-
ferent genes, as with the GeneChips,
and not simply compare the relative
variation of the expression of a gene
across experimental conditions. Note
that placing the different probes that
correspond to a single gene in random
locations on the chip [as is done in the
new U133 Affymetrix chips (1)] and
estimating their average intensity do
not wipe out this artifact.

In summary, we demonstrate a sys-
tematic spatial artifact that arises from
microarray experiments. The source of
the artifact is not fully understood. We
show that a local mean normalization
method is useful but cannot completely
solve the problem. Finally, we propose
experimental and analytical procedures
to quantify and manage this artifact.
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